Oroguchi Tomotaka, Nakasako Masayoshi
Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Feb;87(2):022712. doi: 10.1103/PhysRevE.87.022712. Epub 2013 Feb 19.
Coherent and intense x-ray pulses generated by x-ray free-electron laser (XFEL) sources are paving the way for structural determination of noncrystalline biomolecules. However, due to the small scattering cross section of electrons for x rays, the available incident x-ray intensity of XFEL sources, which is currently in the range of 10(12)-10(13) photons/μm(2)/pulse, is lower than that necessary to perform single-molecule diffraction experiments for noncrystalline biomolecules even with the molecular masses of megadalton and submicrometer dimensions. Here, we propose an experimental protocol and analysis method for visualizing the structure of those biomolecules by the combined application of coherent x-ray diffraction imaging and three-dimensional reconstruction methods. To compensate the small scattering cross section of biomolecules, in our protocol, a thin vitreous ice plate containing several hundred biomolecules/μm(2) is used as sample, a setup similar to that utilized by single-molecule cryoelectron microscopy. The scattering cross section of such an ice plate is far larger than that of a single particle. The images of biomolecules contained within irradiated areas are then retrieved from each diffraction pattern, and finally provide the three-dimensional electron density model. A realistic atomic simulation using large-scale computations proposed that the three-dimensional structure determination of the 50S ribosomal subunit embedded in a vitreous ice plate is possible at a resolution of 0.8 nm when an x-ray beam of 10(16) photons/500×500 nm(2)/pulse is available.
由X射线自由电子激光(XFEL)源产生的相干且强的X射线脉冲正在为非晶态生物分子的结构测定铺平道路。然而,由于电子对X射线的散射截面小,XFEL源目前可用的入射X射线强度在10(12)-10(13)光子/μm(2)/脉冲范围内,即使对于分子量为兆道尔顿且尺寸为亚微米级的非晶态生物分子,该强度也低于进行单分子衍射实验所需的强度。在此,我们提出了一种实验方案和分析方法,通过联合应用相干X射线衍射成像和三维重建方法来可视化这些生物分子的结构。为了补偿生物分子小的散射截面,在我们的方案中,使用含有数百个生物分子/μm(2)的薄玻璃冰板作为样品,其设置类似于单分子冷冻电子显微镜所使用的设置。这种冰板的散射截面远大于单个粒子的散射截面。然后从每个衍射图案中检索出照射区域内所含生物分子的图像,最终提供三维电子密度模型。使用大规模计算进行的实际原子模拟表明,当有10(16)光子/500×500 nm(2)/脉冲的X射线束时,有可能以0.8 nm的分辨率确定嵌入玻璃冰板中的50S核糖体亚基的三维结构。