Suppr超能文献

多智能体系统中群体分裂的拓扑分析

Topological analysis of group fragmentation in multiagent systems.

作者信息

DeLellis Pietro, Porfiri Maurizio, Bollt Erik M

机构信息

Department of Systems and Computer Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Feb;87(2):022818. doi: 10.1103/PhysRevE.87.022818. Epub 2013 Feb 25.

Abstract

In social animals, the presence of conflicts of interest or multiple leaders can promote the emergence of two or more subgroups. Such subgroups are easily recognizable by human observers, yet a quantitative and objective measure of group fragmentation is currently lacking. In this paper, we explore the feasibility of detecting group fragmentation by embedding the raw data from the individuals' motions on a low-dimensional manifold and analyzing the topological features of this manifold. To perform the embedding, we employ the isomap algorithm, which is a data-driven machine learning tool extensively used in computer vision. We implement this procedure on a data set generated by a modified à la Vicsek model, where agents are partitioned into two or more subsets and an independent leader is assigned to each subset. The dimensionality of the embedding manifold is shown to be a measure of the number of emerging subgroups in the selected observation window and a cluster analysis is proposed to aid the interpretation of these findings. To explore the feasibility of using this approach to characterize group fragmentation in real time and thus reduce the computational cost in data processing and storage, we propose an interpolation method based on an inverse mapping from the embedding space to the original space. The effectiveness of the interpolation technique is illustrated on a test-bed example with potential impact on the regulation of collective behavior of animal groups using robotic stimuli.

摘要

在群居动物中,利益冲突的存在或多个领导者的出现会促使两个或更多亚群体的形成。这样的亚群体很容易被人类观察者识别出来,但目前缺乏一种定量且客观的群体分裂度量方法。在本文中,我们探讨通过将个体运动的原始数据嵌入到低维流形中并分析该流形的拓扑特征来检测群体分裂的可行性。为了进行嵌入,我们采用等距映射算法,这是一种在计算机视觉中广泛使用的数据驱动型机器学习工具。我们在一个由修改后的类似维谢克模型生成的数据集上实施此过程,其中智能体被划分为两个或更多子集,并且为每个子集分配一个独立的领导者。嵌入流形的维度被证明是所选观察窗口中出现的亚群体数量的一种度量,并且我们提出了一种聚类分析来辅助解释这些发现。为了探索使用这种方法实时表征群体分裂从而降低数据处理和存储中的计算成本的可行性,我们提出了一种基于从嵌入空间到原始空间的逆映射的插值方法。在一个对使用机器人刺激来调节动物群体集体行为具有潜在影响的试验台示例中展示了插值技术的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验