Université de Lyon, Institut des Nanotechnologies de Lyon (INL) UMR CNRS 5270, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France.
Mater Sci Eng C Mater Biol Appl. 2013 May 1;33(4):2311-6. doi: 10.1016/j.msec.2013.01.055. Epub 2013 Jan 31.
Using amplitude-mode AFM (AM-AFM), we have obtained valuable information during these recent years through the study of amplitude and phase shift dependence on tip-sample separation, leading to a comprehensive understanding of the interaction processes. Two imaging regimes, attractive and repulsive, have been identified and a relationship between phase and dissipative energy was established, providing information on observed material properties. Most of the previous studies have concerned model systems: either hard or soft materials. In this paper, we present the analysis of a mixed system of soft structures on a hard substrate. This is a DNA chip for biological applications consisting of oligonucleotides covalently linked by a layer of silane to a silicon substrate. A detailed study of amplitude-phase curves as a function of the tip-sample separation allowed us to define the best experimental conditions to obtain specific information: we got reliable conditions to minimize noise during topographic imaging and an understanding of the processes of energy dissipation involved in the DNA breaking for DNA arrays. By calculating the energy dissipated as a function of the amplitude of oscillation, we have demonstrated a transition from an energy dissipation process governed by localized viscoelastic interactions (due to the soft layer) to a process governed by extended irreversible deformations (due to the hard substrate).
使用振幅模式原子力显微镜(AM-AFM),我们近年来通过研究针尖-样品分离对振幅和相移的依赖性获得了有价值的信息,从而全面了解了相互作用过程。已经确定了两种成像模式,吸引力和排斥力,并建立了相位和耗散能量之间的关系,提供了有关观察到的材料特性的信息。以前的大多数研究都集中在模型系统上:要么是硬材料,要么是软材料。在本文中,我们分析了硬基底上的软结构混合系统。这是一种用于生物应用的 DNA 芯片,由通过硅烷层共价连接到硅基底上的寡核苷酸组成。通过研究振幅-相位曲线随针尖-样品分离的函数关系,我们定义了获得特定信息的最佳实验条件:我们获得了可靠的条件,可以在形貌成像过程中最小化噪声,并了解 DNA 阵列中 DNA 断裂所涉及的能量耗散过程。通过计算作为振荡幅度的函数耗散的能量,我们证明了从由局部粘弹性相互作用(由于软层)控制的能量耗散过程到由扩展不可逆变形(由于硬基底)控制的能量耗散过程的转变。