Department of Radiotherapy, Laboratory for Experimental Oncology and Radiobiology, Center for Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
Int J Oncol. 2013 May;42(5):1501-15. doi: 10.3892/ijo.2013.1857. Epub 2013 Mar 13.
The linear-quadratic model (LQ model) provides a biologically plausible and experimentally established method to quantitatively describe the dose-response to irradiation in terms of clonogenic survival. In the basic LQ formula, the clonogenic surviving fraction Sd/S₀ following a radiation dose d (Gy) is described by an inverse exponential approximation: Sd/S₀ = e-(αd+βd²), wherein α and β are experimentally derived parameters for the linear and quadratic terms, respectively. Radiation is often combined with other agents to achieve radiosensitisation. In this study, we reviewed radiation enhancement ratios of hyperthermia (HT), halogenated pyrimidines (HPs), various cytostatic drugs and poly(ADP-ribose) polymerase‑1 (PARP1) inhibitors expressed in the parameters α and β derived from cell survival curves of various mammalian cell cultures. A significant change in the α/β ratio is of direct clinical interest for the selection of optimal fractionation schedules in radiation oncology, influencing the dose per fraction, dose fractionation and dose rate in combined treatments. The α/β ratio may increase by a mutually independent increase of α or decrease of β. The results demonstrated that the different agents increased the values of both α and β. However, depending on culture conditions, both parameters can also be separately influenced. Moreover, it appeared that radiosensitisation was more effective in radioresistant cell lines than in radiosensitive cell lines. Furthermore, radiosensitisation is also dependent on the cell cycle stage, such as the plateau or exponentially growing phase, as well as on post-treatment plating conditions. The LQ model provides a useful tool in the quantification of the effects of radiosensitising agents. These insights will help optimize fractionation schedules in multimodality treatments.
线性二次模型(LQ 模型)提供了一种生物学上合理且经过实验验证的方法,可根据集落形成能力的生存情况,定量描述照射剂量与反应之间的关系。在基本的 LQ 公式中,辐射剂量 d(Gy)后集落形成存活分数 Sd/S₀ 用反指数近似描述:Sd/S₀ = e-(αd+βd²),其中 α 和 β 分别是线性和二次项的实验得出的参数。辐射通常与其他药物联合使用以实现放射增敏。在这项研究中,我们回顾了热疗(HT)、卤代嘧啶(HPs)、各种细胞生长抑制剂和聚(ADP-核糖)聚合酶 1(PARP1)抑制剂在哺乳动物细胞培养物的细胞存活曲线中得出的参数 α 和 β 中表达的辐射增强比。α/β 比值的显著变化对放射肿瘤学中选择最佳分割方案具有直接的临床意义,影响联合治疗中的单次剂量、分割剂量和剂量率。α/β 比值可能通过α的独立增加或β的减少而增加。结果表明,不同的药物增加了α和β的值。然而,取决于培养条件,这两个参数也可以单独受到影响。此外,放射增敏在放射抗性细胞系中比在放射敏感细胞系中更有效。此外,放射增敏还取决于细胞周期阶段,如平台期或指数生长期,以及处理后的接种条件。LQ 模型为量化放射增敏剂的作用提供了有用的工具。这些见解将有助于优化多模式治疗中的分割方案。