Suppr超能文献

准确的 SHAPE 指导的 RNA 二级结构建模,包括假结。

Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots.

机构信息

Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA.

出版信息

Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5498-503. doi: 10.1073/pnas.1219988110. Epub 2013 Mar 15.

Abstract

A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, these pairings are difficult to model accurately, especially in large RNAs, because allowing this structure dramatically increases the number of possible incorrect folds and because it is difficult to search the fold space for an optimal structure. We have developed a concise secondary structure modeling approach that combines SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) experimental chemical probing information and a simple, but robust, energy model for the entropic cost of single pseudoknot formation. Structures are predicted with iterative refinement, using a dynamic programming algorithm. This melded experimental and thermodynamic energy function predicted the secondary structures and the pseudoknots for a set of 21 challenging RNAs of known structure ranging in size from 34 to 530 nt. On average, 93% of known base pairs were predicted, and all pseudoknots in well-folded RNAs were identified.

摘要

当环中的核苷酸与闭合环的螺旋之外的区域配对时,RNA 中会形成假结。假结在 RNA 中相对较少见,但在大型催化 RNA 中的功能关键基序、核酶和病毒的调控元件中高度过表达。假结通常被排除在 RNA 结构预测算法之外。当包含这些配对时,由于允许这种结构会极大地增加可能的不正确折叠的数量,并且由于难以在折叠空间中搜索最优结构,因此很难准确地对其进行建模。我们开发了一种简洁的二级结构建模方法,该方法结合了 SHAPE(通过引物延伸分析的选择性 2'-羟基酰化)实验化学探测信息,以及一种简单但强大的用于单假结形成熵成本的能量模型。使用动态规划算法通过迭代细化来预测结构。这种融合的实验和热力学能量函数预测了一组 21 个具有挑战性的已知结构的 RNA 的二级结构和假结,这些 RNA 的大小从 34 到 530 个核苷酸不等。平均而言,预测出了 93%的已知碱基对,并且所有折叠良好的 RNA 中的假结都被识别出来。

相似文献

1
Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots.
Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5498-503. doi: 10.1073/pnas.1219988110. Epub 2013 Mar 15.
3
The computer simulation of RNA folding involving pseudoknot formation.
Nucleic Acids Res. 1991 May 11;19(9):2489-94. doi: 10.1093/nar/19.9.2489.
4
RNA pseudoknot prediction in energy-based models.
J Comput Biol. 2000;7(3-4):409-27. doi: 10.1089/106652700750050862.
5
An iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots.
Bioinformatics. 2004 Jan 1;20(1):58-66. doi: 10.1093/bioinformatics/btg373.
6
Modular RNA architecture revealed by computational analysis of existing pseudoknots and ribosomal RNAs.
Nucleic Acids Res. 2005 Mar 3;33(4):1384-98. doi: 10.1093/nar/gki267. Print 2005.
7
Prediction of consensus RNA secondary structures including pseudoknots.
IEEE/ACM Trans Comput Biol Bioinform. 2004 Apr-Jun;1(2):66-77. doi: 10.1109/TCBB.2004.22.
10
KnotSeeker: heuristic pseudoknot detection in long RNA sequences.
RNA. 2008 Apr;14(4):630-40. doi: 10.1261/rna.968808. Epub 2008 Feb 26.

引用本文的文献

1
A small cationic probe for accurate, punctate discovery of RNA tertiary structure.
bioRxiv. 2025 Aug 30:2025.08.29.672938. doi: 10.1101/2025.08.29.672938.
2
Conformational Analysis and Structure-Altering Mutations of the HIV-1 Frameshifting Element.
Int J Mol Sci. 2025 Jun 30;26(13):6297. doi: 10.3390/ijms26136297.
5
Comprehensive analysis of Saccharomyces cerevisiae intron structures in vivo.
Nat Struct Mol Biol. 2025 Jun 5. doi: 10.1038/s41594-025-01565-x.
6
A divide-and-conquer approach based on deep learning for long RNA secondary structure prediction: Focus on pseudoknots identification.
PLoS One. 2025 Apr 25;20(4):e0314837. doi: 10.1371/journal.pone.0314837. eCollection 2025.
7
Transformers in RNA structure prediction: A review.
Comput Struct Biotechnol J. 2025 Mar 17;27:1187-1203. doi: 10.1016/j.csbj.2025.03.021. eCollection 2025.
8
IPANEMAP Suite: a pipeline for probing-informed RNA structure modeling.
NAR Genom Bioinform. 2025 Mar 25;7(1):lqaf028. doi: 10.1093/nargab/lqaf028. eCollection 2025 Mar.
9
A Cascade of Conformational Switches in SARS-CoV-2 Frameshifting: Coregulation by Upstream and Downstream Elements.
Biochemistry. 2025 Feb 18;64(4):953-966. doi: 10.1021/acs.biochem.4c00641. Epub 2025 Feb 5.
10
Telomerase RNA structural heterogeneity in living human cells detected by DMS-MaPseq.
Nat Commun. 2025 Jan 22;16(1):925. doi: 10.1038/s41467-025-56149-6.

本文引用的文献

1
Principles for understanding the accuracy of SHAPE-directed RNA structure modeling.
Biochemistry. 2013 Jan 29;52(4):588-95. doi: 10.1021/bi300755u. Epub 2013 Jan 14.
2
Fluoride ion encapsulation by Mg2+ ions and phosphates in a fluoride riboswitch.
Nature. 2012 May 13;486(7401):85-9. doi: 10.1038/nature11152.
3
Sharing and archiving nucleic acid structure mapping data.
RNA. 2011 Jul;17(7):1204-12. doi: 10.1261/rna.2753211. Epub 2011 May 24.
4
Emerging structural themes in large RNA molecules.
Curr Opin Struct Biol. 2011 Jun;21(3):319-26. doi: 10.1016/j.sbi.2011.03.003. Epub 2011 Apr 7.
5
ProbKnot: fast prediction of RNA secondary structure including pseudoknots.
RNA. 2010 Oct;16(10):1870-80. doi: 10.1261/rna.2125310. Epub 2010 Aug 10.
6
A two-length-scale polymer theory for RNA loop free energies and helix stacking.
RNA. 2010 Jul;16(7):1350-5. doi: 10.1261/rna.1831710. Epub 2010 May 26.
7
RNA pseudoknots: folding and finding.
F1000 Biol Rep. 2010 Jan 27;2:8. doi: 10.3410/B2-8.
8
Predicting loop-helix tertiary structural contacts in RNA pseudoknots.
RNA. 2010 Mar;16(3):538-52. doi: 10.1261/rna.1800210. Epub 2010 Jan 25.
9
Improved free energy parameters for RNA pseudoknotted secondary structure prediction.
RNA. 2010 Jan;16(1):26-42. doi: 10.1261/rna.1689910. Epub 2009 Nov 20.
10
NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure.
Nucleic Acids Res. 2010 Jan;38(Database issue):D280-2. doi: 10.1093/nar/gkp892. Epub 2009 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验