Suppr超能文献

一种用于 RNA 无环自由能和螺旋堆积的两长度标度聚合物理论。

A two-length-scale polymer theory for RNA loop free energies and helix stacking.

机构信息

Department of Physics, Williams College, Williamstown, Massachusetts 01257, USA.

出版信息

RNA. 2010 Jul;16(7):1350-5. doi: 10.1261/rna.1831710. Epub 2010 May 26.

Abstract

The reliability of RNA secondary structure predictions is subject to the accuracy of the underlying free energy model. Mfold and other RNA folding algorithms are based on the Turner model, whose weakest part is its formulation of loop free energies, particularly for multibranch loops. RNA loops contain single-strand and helix-crossing segments, so we develop an enhanced two-length freely jointed chain theory and revise it for self-avoidance. Our resulting universal formula for RNA loop entropy has fewer parameters than the Turner/Mfold model, and yet simulations show that the standard errors for multibranch loop free energies are reduced by an order of magnitude. We further note that coaxial stacking decreases the effective length of multibranch loops and provides, surprisingly, an entropic stabilization of the ordered configuration in addition to the enthalpic contribution of helix stacking. Our formula is in good agreement with measured hairpin free energies. We find that it also improves the accuracy of folding predictions.

摘要

RNA 二级结构预测的可靠性取决于基础自由能模型的准确性。Mfold 和其他 RNA 折叠算法基于 Turner 模型,该模型的最薄弱环节在于其环自由能的表述,特别是对于多分支环。RNA 环包含单链和螺旋交叉片段,因此我们开发了一种增强的双长度自由连接链理论,并对其进行了自我回避修正。我们得到的 RNA 环熵通用公式比 Turner/Mfold 模型具有更少的参数,但模拟表明,多分支环自由能的标准误差降低了一个数量级。我们进一步指出,同轴堆积减少了多分支环的有效长度,并出人意料地提供了有序构象的熵稳定,除了螺旋堆积的焓贡献之外。我们的公式与测量的发夹自由能吻合良好。我们发现它还可以提高折叠预测的准确性。

相似文献

1
A two-length-scale polymer theory for RNA loop free energies and helix stacking.
RNA. 2010 Jul;16(7):1350-5. doi: 10.1261/rna.1831710. Epub 2010 May 26.
2
Loop Entropy Assists Tertiary Order: Loopy Stabilization of Stacking Motifs.
Entropy (Basel). 2011 Nov 24;13(11):1958-1966. doi: 10.3390/e13111958.
3
Discrete state model and accurate estimation of loop entropy of RNA secondary structures.
J Chem Phys. 2008 Mar 28;128(12):125107. doi: 10.1063/1.2895050.
4
Theory for RNA folding, stretching, and melting including loops and salt.
Biophys J. 2011 Jun 8;100(11):2745-53. doi: 10.1016/j.bpj.2011.04.038.
5
Predicting helical coaxial stacking in RNA multibranch loops.
RNA. 2007 Jul;13(7):939-51. doi: 10.1261/rna.305307. Epub 2007 May 16.
7
Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures.
RNA. 2016 Dec;22(12):1808-1818. doi: 10.1261/rna.053694.115. Epub 2016 Oct 19.
9
Conformational entropy of the RNA phosphate backbone and its contribution to the folding free energy.
Biophys J. 2014 Apr 1;106(7):1497-507. doi: 10.1016/j.bpj.2014.02.015.

引用本文的文献

1
Estimating RNA Secondary Structure Folding Free Energy Changes with efn2.
Methods Mol Biol. 2024;2726:1-13. doi: 10.1007/978-1-0716-3519-3_1.
2
Making ends meet: New functions of mRNA secondary structure.
Wiley Interdiscip Rev RNA. 2021 Mar;12(2):e1611. doi: 10.1002/wrna.1611. Epub 2020 Jun 29.
3
A Polymer Physics Framework for the Entropy of Arbitrary Pseudoknots.
Biophys J. 2019 Aug 6;117(3):520-532. doi: 10.1016/j.bpj.2019.06.037. Epub 2019 Jul 10.
4
Estimating uncertainty in predicted folding free energy changes of RNA secondary structures.
RNA. 2019 Jun;25(6):747-754. doi: 10.1261/rna.069203.118. Epub 2019 Apr 5.
5
Determining parameters for non-linear models of multi-loop free energy change.
Bioinformatics. 2019 Nov 1;35(21):4298-4306. doi: 10.1093/bioinformatics/btz222.
6
mRNAs and lncRNAs intrinsically form secondary structures with short end-to-end distances.
Nat Commun. 2018 Oct 18;9(1):4328. doi: 10.1038/s41467-018-06792-z.
7
Topological Constraints and Their Conformational Entropic Penalties on RNA Folds.
Biophys J. 2018 May 8;114(9):2059-2071. doi: 10.1016/j.bpj.2018.03.035.
8
Advanced multi-loop algorithms for RNA secondary structure prediction reveal that the simplest model is best.
Nucleic Acids Res. 2017 Aug 21;45(14):8541-8550. doi: 10.1093/nar/gkx512.
9
Physics-based RNA structure prediction.
Biophys Rep. 2015;1:2-13. doi: 10.1007/s41048-015-0001-4. Epub 2015 Jul 9.

本文引用的文献

1
RNA STRAND: the RNA secondary structure and statistical analysis database.
BMC Bioinformatics. 2008 Aug 13;9:340. doi: 10.1186/1471-2105-9-340.
2
Discrete state model and accurate estimation of loop entropy of RNA secondary structures.
J Chem Phys. 2008 Mar 28;128(12):125107. doi: 10.1063/1.2895050.
3
Efficient parameter estimation for RNA secondary structure prediction.
Bioinformatics. 2007 Jul 1;23(13):i19-28. doi: 10.1093/bioinformatics/btm223.
4
Predicting helical coaxial stacking in RNA multibranch loops.
RNA. 2007 Jul;13(7):939-51. doi: 10.1261/rna.305307. Epub 2007 May 16.
5
The tmRDB and SRPDB resources.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D163-8. doi: 10.1093/nar/gkj142.
6
Predicting RNA folding thermodynamics with a reduced chain representation model.
RNA. 2005 Dec;11(12):1884-97. doi: 10.1261/rna.2109105. Epub 2005 Oct 26.
7
Asymmetry in RNA pseudoknots: observation and theory.
Nucleic Acids Res. 2005 Apr 14;33(7):2210-4. doi: 10.1093/nar/gki508. Print 2005.
8
Rfam: annotating non-coding RNAs in complete genomes.
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D121-4. doi: 10.1093/nar/gki081.
10
Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure.
Proc Natl Acad Sci U S A. 2004 May 11;101(19):7287-92. doi: 10.1073/pnas.0401799101. Epub 2004 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验