Suppr超能文献

使用MEMo发现癌症中的互斥模块。

Using MEMo to discover mutual exclusivity modules in cancer.

作者信息

Ciriello Giovanni, Cerami Ethan, Aksoy Bulent Arman, Sander Chris, Schultz Nikolaus

机构信息

Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York.

出版信息

Curr Protoc Bioinformatics. 2013 Mar;Chapter 8:8.17.1-8.17.12. doi: 10.1002/0471250953.bi0817s41.

Abstract

Although individual tumors show surprisingly diverse genomic alterations, these events tend to occur in a limited number of pathways, and alterations that affect the same pathway tend to not co-occur in the same patient. While pathway analysis has been a powerful tool in cancer genomics, our knowledge of oncogenic pathway modules is incomplete. To systematically identify such modules, we have developed a novel method, Mutual Exclusivity Modules in Cancer (MEMo). The method searches and identifies modules characterized by three properties: (1) member genes are recurrently altered across a set of tumor samples; (2) member genes are known to or are likely to participate in the same biological process; and (3) alteration events within the modules are mutually exclusive. MEMo integrates multiple data types and maps genomic alterations to biological pathways. MEMo's mutual exclusivity uses a statistical model that preserves the number of alterations per gene and per sample. The MEMo software, source code and sample data sets are available for download at: http://cbio.mskcc.org/memo.

摘要

尽管单个肿瘤显示出惊人的多样基因组改变,但这些事件往往发生在有限数量的通路中,并且影响相同通路的改变往往不会在同一患者中同时出现。虽然通路分析在癌症基因组学中是一个强大的工具,但我们对致癌通路模块的了解并不完整。为了系统地识别此类模块,我们开发了一种新方法——癌症中的互斥模块(MEMo)。该方法搜索并识别具有三个特性的模块:(1)成员基因在一组肿瘤样本中反复发生改变;(2)成员基因已知或可能参与相同的生物学过程;(3)模块内的改变事件是互斥的。MEMo整合多种数据类型,并将基因组改变映射到生物学通路。MEMo的互斥性使用一种统计模型,该模型保留每个基因和每个样本的改变数量。MEMo软件、源代码和样本数据集可在以下网址下载:http://cbio.mskcc.org/memo

相似文献

1
Using MEMo to discover mutual exclusivity modules in cancer.
Curr Protoc Bioinformatics. 2013 Mar;Chapter 8:8.17.1-8.17.12. doi: 10.1002/0471250953.bi0817s41.
2
Mutual exclusivity analysis identifies oncogenic network modules.
Genome Res. 2012 Feb;22(2):398-406. doi: 10.1101/gr.125567.111. Epub 2011 Sep 9.
4
Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
BMC Syst Biol. 2013;7 Suppl 2(Suppl 2):S4. doi: 10.1186/1752-0509-7-S2-S4. Epub 2013 Oct 14.
5
Simultaneous Integration of Multi-omics Data Improves the Identification of Cancer Driver Modules.
Cell Syst. 2019 May 22;8(5):456-466.e5. doi: 10.1016/j.cels.2019.04.005. Epub 2019 May 15.
6
An information theoretic method to identify combinations of genomic alterations that promote glioblastoma.
J Mol Cell Biol. 2015 Jun;7(3):203-13. doi: 10.1093/jmcb/mjv026. Epub 2015 May 4.
7
Efficient algorithms to discover alterations with complementary functional association in cancer.
PLoS Comput Biol. 2019 May 23;15(5):e1006802. doi: 10.1371/journal.pcbi.1006802. eCollection 2019 May.
8
Identifying Driver Genomic Alterations in Cancers by Searching Minimum-Weight, Mutually Exclusive Sets.
PLoS Comput Biol. 2015 Aug 28;11(8):e1004257. doi: 10.1371/journal.pcbi.1004257. eCollection 2015 Aug.
9
Modeling mutual exclusivity of cancer mutations.
PLoS Comput Biol. 2014 Mar 27;10(3):e1003503. doi: 10.1371/journal.pcbi.1003503. eCollection 2014 Mar.

引用本文的文献

1
Mutations in tumor signaling, metastases, and synthetic lethality establish distinct patterns.
PLoS Comput Biol. 2025 Aug 4;21(8):e1013351. doi: 10.1371/journal.pcbi.1013351. eCollection 2025 Aug.
2
A heuristic algorithm solving the mutual-exclusivity-sorting problem.
Bioinformatics. 2023 Jan 1;39(1). doi: 10.1093/bioinformatics/btad016.
4
Cancer-Associated circRNA-miRNA-mRNA Regulatory Networks: A Meta-Analysis.
Front Mol Biosci. 2021 May 12;8:671309. doi: 10.3389/fmolb.2021.671309. eCollection 2021.
5
Identifying Drug Sensitivity Subnetworks with NETPHIX.
iScience. 2020 Sep 29;23(10):101619. doi: 10.1016/j.isci.2020.101619. eCollection 2020 Oct 23.
7
High Levels of Chromosomal Copy Number Alterations and TP53 Mutations Correlate with Poor Outcome in Younger Breast Cancer Patients.
Am J Pathol. 2020 Aug;190(8):1643-1656. doi: 10.1016/j.ajpath.2020.04.015. Epub 2020 May 13.
8
Opposite Roles of BAP1 in Overall Survival of Uveal Melanoma and Cutaneous Melanoma.
J Clin Med. 2020 Feb 3;9(2):411. doi: 10.3390/jcm9020411.
9
Pan-cancer analysis of transcriptional metabolic dysregulation using The Cancer Genome Atlas.
Nat Commun. 2018 Dec 14;9(1):5330. doi: 10.1038/s41467-018-07232-8.
10
Pathway-based subnetworks enable cross-disease biomarker discovery.
Nat Commun. 2018 Nov 12;9(1):4746. doi: 10.1038/s41467-018-07021-3.

本文引用的文献

1
Comprehensive molecular portraits of human breast tumours.
Nature. 2012 Oct 4;490(7418):61-70. doi: 10.1038/nature11412. Epub 2012 Sep 23.
2
Comprehensive molecular characterization of human colon and rectal cancer.
Nature. 2012 Jul 18;487(7407):330-7. doi: 10.1038/nature11252.
3
MuSiC: identifying mutational significance in cancer genomes.
Genome Res. 2012 Aug;22(8):1589-98. doi: 10.1101/gr.134635.111. Epub 2012 Jul 3.
4
The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data.
Cancer Discov. 2012 May;2(5):401-4. doi: 10.1158/2159-8290.CD-12-0095.
5
Mutual exclusivity analysis identifies oncogenic network modules.
Genome Res. 2012 Feb;22(2):398-406. doi: 10.1101/gr.125567.111. Epub 2011 Sep 9.
6
Integrated genomic analyses of ovarian carcinoma.
Nature. 2011 Jun 29;474(7353):609-15. doi: 10.1038/nature10166.
7
Functional copy-number alterations in cancer.
PLoS One. 2008 Sep 11;3(9):e3179. doi: 10.1371/journal.pone.0003179.
8
Comprehensive genomic characterization defines human glioblastoma genes and core pathways.
Nature. 2008 Oct 23;455(7216):1061-8. doi: 10.1038/nature07385. Epub 2008 Sep 4.
9
Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma.
Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):20007-12. doi: 10.1073/pnas.0710052104. Epub 2007 Dec 6.
10
Comment on "The consensus coding sequences of human breast and colorectal cancers".
Science. 2007 Sep 14;317(5844):1500. doi: 10.1126/science.1138764.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验