Suppr超能文献

泰国伯克霍尔德菌ADP-L-甘油-D-甘露庚糖6-表异构酶的结构及计算机模拟底物结合模式

Structure and in silico substrate-binding mode of ADP-L-glycero-D-manno-heptose 6-epimerase from Burkholderia thailandensis.

作者信息

Kim Mi-Sun, Lim Areum, Yang Seung Won, Park Jimin, Lee Daeun, Shin Dong Hae

机构信息

The Center for Cell Signaling and Drug Discovery Research, College of Pharmacy, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea.

出版信息

Acta Crystallogr D Biol Crystallogr. 2013 Apr;69(Pt 4):658-68. doi: 10.1107/S0907444913001030. Epub 2013 Mar 14.

Abstract

ADP-L-glycero-D-manno-heptose 6-epimerase (AGME), the product of the rfaD gene, is the last enzyme in the heptose-biosynthesis pathway; it converts ADP-D-glycero-D-manno-heptose (ADP-D,D-Hep) to ADP-L-glycero-D-manno-heptose (ADP-L,D-Hep). AGME contains a catalytic triad involved in catalyzing hydride transfer with the aid of NADP(+). Defective lipopolysaccharide is found in bacterial mutants lacking this gene. Therefore, it is an interesting target enzyme for a novel epimerase inhibitor for use as a co-therapy with antibiotics. The crystal structure of AGME from Burkholderia thailandensis (BtAGME), a surrogate organism for studying the pathogenicity of melioidosis caused by B. pseudomallei, has been determined. The crystal structure determined with co-purified NADP(+) revealed common as well as unique structural properties of the AGME family when compared with UDP-galactose 4-epimerase homologues. They form a similar architecture with conserved catalytic residues. Nevertheless, there are differences in the substrate- and cofactor-binding cavities and the oligomerization domains. Structural comparison of BtAGME with AGME from Escherichia coli indicates that they may recognize their substrate in a `lock-and-key' fashion. Unique structural features of BtAGME are found in two regions. The first region is the loop between β8 and β9, affecting the binding affinity of BtAGME for the ADP moiety of ADP-D,D-Hep. The second region is helix α8, which induces decamerization at low pH that is not found in other AGMEs. With the E210G mutant, it was observed that the resistance of the wild type to acid-induced denaturation is related to the decameric state. An in silico study was performed using the Surflex-Dock GeomX module of the SYBYL-X 1.3 software to predict the catalytic mechanism of BtAGME with its substrate, ADP-D,D-Hep. In the in silico study, the C7'' hydroxymethyl group of ADP-D,D-Hep is predicted to form hydrogen bonds to Ser116 and Gln293. With the aid of these interactions, the hydroxyl of Tyr139 forms a hydrogen bond to O6″ of ADP-D,D-Hep and the proton at C6″ orients closely to C4 of NADP(+). Therefore, the in silico study supports a one-base mechanism as a major catalytic pathway, in which Tyr139 solely functions as a catalytic acid/base residue. These results provide a new insight into the development of an epimerase inhibitor as an antibiotic adjuvant against melioidosis.

摘要

ADP-L-甘油-D-甘露庚糖6-表异构酶(AGME)是rfaD基因的产物,是庚糖生物合成途径中的最后一种酶;它将ADP-D-甘油-D-甘露庚糖(ADP-D,D-庚糖)转化为ADP-L-甘油-D-甘露庚糖(ADP-L,D-庚糖)。AGME含有一个催化三联体,在NADP(+)的辅助下催化氢化物转移。在缺乏该基因的细菌突变体中发现了有缺陷的脂多糖。因此,它是一种新型表异构酶抑制剂的有趣靶标酶,可与抗生素联合使用。已确定来自泰国伯克霍尔德菌(BtAGME)的AGME晶体结构,泰国伯克霍尔德菌是研究由类鼻疽杆菌引起的类鼻疽病致病性的替代生物体。与共纯化的NADP(+)一起测定的晶体结构揭示了与UDP-半乳糖4-表异构酶同系物相比,AGME家族的共同以及独特的结构特性。它们形成具有保守催化残基的相似结构。然而,在底物和辅因子结合腔以及寡聚化结构域方面存在差异。BtAGME与大肠杆菌AGME的结构比较表明,它们可能以“锁钥”方式识别其底物。BtAGME的独特结构特征存在于两个区域。第一个区域是β8和β9之间的环,影响BtAGME对ADP-D,D-庚糖的ADP部分的结合亲和力。第二个区域是螺旋α8,它在低pH下诱导十聚化,这在其他AGME中未发现。对于E210G突变体,观察到野生型对酸诱导变性的抗性与十聚体状态有关。使用SYBYL-X 1.3软件的Surflex-Dock GeomX模块进行了计算机模拟研究,以预测BtAGME与其底物ADP-D,D-庚糖的催化机制。在计算机模拟研究中,预测ADP-D,D-庚糖的C7''羟甲基与Ser116和Gln293形成氢键。借助这些相互作用,Tyr139的羟基与ADP-D,D-庚糖的O6″形成氢键,C6″处的质子紧密定向于NADP(+)的C4。因此,计算机模拟研究支持单碱基机制作为主要催化途径,其中Tyr139仅作为催化酸/碱残基起作用。这些结果为开发作为抗类鼻疽病抗生素佐剂的表异构酶抑制剂提供了新的见解。

相似文献

1
Structure and in silico substrate-binding mode of ADP-L-glycero-D-manno-heptose 6-epimerase from Burkholderia thailandensis.
Acta Crystallogr D Biol Crystallogr. 2013 Apr;69(Pt 4):658-68. doi: 10.1107/S0907444913001030. Epub 2013 Mar 14.
2
A two-base mechanism for Escherichia coli ADP-L-glycero-D-manno-heptose 6-epimerase.
Biochemistry. 2007 Mar 27;46(12):3916-24. doi: 10.1021/bi602641m. Epub 2007 Feb 23.
3
Intermediate release by ADP-L-glycero-D-manno-heptose 6-epimerase.
Biochemistry. 2007 May 22;46(20):6149-55. doi: 10.1021/bi700332h. Epub 2007 Apr 25.
4
The mechanism of the reaction catalyzed by ADP-beta-L-glycero-D-manno-heptose 6-epimerase.
J Am Chem Soc. 2004 Jul 28;126(29):8878-9. doi: 10.1021/ja0485659.
6
The crystal structure of ADP-L-glycero-D-mannoheptose 6-epimerase: catalysis with a twist.
Structure. 2000 May 15;8(5):453-62. doi: 10.1016/s0969-2126(00)00128-3.
9
The crystal structure of ADP-L-glycero-D-manno-heptose-6-epimerase (HP0859) from Helicobacter pylori.
Biochim Biophys Acta. 2011 Dec;1814(12):1641-7. doi: 10.1016/j.bbapap.2011.09.006. Epub 2011 Sep 25.
10
Crystal structure of D-glycero-Β-D-manno-heptose-1-phosphate adenylyltransferase from Burkholderia pseudomallei.
Proteins. 2018 Jan;86(1):124-131. doi: 10.1002/prot.25398. Epub 2017 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验