Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1822, United States.
Int J Biochem Cell Biol. 2013 Jul;45(7):1155-64. doi: 10.1016/j.biocel.2013.03.007. Epub 2013 Mar 20.
Erythropoietin activity, required for erythropoiesis, is not restricted to the erythroid lineage. In light of reports on the metabolic effects of erythropoietin, we examined the effect of erythropoietin signaling on skeletal muscle fiber type development. Skeletal muscles that are rich in slow twitch fibers are associated with increased mitochondrial oxidative activity and corresponding expression of related genes compared to muscle rich in fast twitch fibers. Although erythropoietin receptor is expressed on muscle progenitor/precursor cells and is down regulated in mature muscle fibers, we found that skeletal muscles from mice with high erythropoietin production in vivo exhibit an increase in the proportion of slow twitch myofibers and increased mitochondrial activity. In comparison, skeletal muscle from wild type mice and mice with erythropoietin activity restricted to erythroid tissue have fewer slow twitch myofibers and reduced mitochondrial activity. PGC-1α activates mitochondrial oxidative metabolism and converts the fast myofibers to slow myofibers when overexpressed in skeletal muscle and PGC-1α was elevated by 2-fold in mice with high erythropoietin. In vitro erythropoietin treatment of primary skeletal myoblasts increased mitochondrial biogenesis gene expression including PGC-1α by 2.6-fold, CytC by 2-fold, oxygen consumption rate by 2-fold, and citrate synthase activity by 58%. Erythropoietin also increases AMPK, which induces PGC-1α and stimulates slow oxidative fiber formation. These data suggest that erythropoietin contributes to skeletal muscle fiber programming and metabolism, and increases PGC-1α and AMPK activity during muscle development directly to affect the proportion of slow/fast twitch myofibers in mature skeletal muscle.
促红细胞生成素活性对于红细胞生成是必需的,而不限于红细胞谱系。鉴于有关促红细胞生成素代谢作用的报道,我们研究了促红细胞生成素信号对骨骼肌纤维类型发育的影响。富含慢肌纤维的骨骼肌与富含快肌纤维的骨骼肌相比,具有更高的线粒体氧化活性和相关基因的表达。尽管促红细胞生成素受体在肌肉祖细胞/前体细胞上表达,并在成熟肌肉纤维中下调,但我们发现体内促红细胞生成素产量高的小鼠的骨骼肌中慢肌纤维的比例增加,线粒体活性增加。相比之下,野生型小鼠和促红细胞生成素活性仅限于红细胞组织的小鼠的骨骼肌中慢肌纤维较少,线粒体活性降低。PGC-1α在骨骼肌中过表达时会激活线粒体氧化代谢,并将快肌纤维转化为慢肌纤维,并且 PGC-1α在高促红细胞生成素小鼠中增加了 2 倍。体内高促红细胞生成素小鼠的 PGC-1α 增加了 2 倍,体外促红细胞生成素处理原代骨骼肌成肌细胞增加了线粒体生物发生基因表达,包括 PGC-1α 增加了 2.6 倍、CytC 增加了 2 倍、耗氧量增加了 2 倍、柠檬酸合酶活性增加了 58%。促红细胞生成素还增加了 AMPK,这会诱导 PGC-1α 并刺激慢氧化纤维形成。这些数据表明,促红细胞生成素有助于骨骼肌纤维编程和代谢,并在肌肉发育过程中直接增加 PGC-1α 和 AMPK 活性,从而影响成熟骨骼肌中慢/快肌纤维的比例。