Drukker Karen, Giger Maryellen, Meinel Lina Arbash, Starkey Adam, Janardanan Jyothi, Abe Hiroyuki
University of Chicago, Chicago, IL, USA,
Int J Comput Assist Radiol Surg. 2013 Nov;8(6):895-903. doi: 10.1007/s11548-013-0829-3. Epub 2013 Mar 24.
Ultrasonography has the potential to accurately stage breast cancer with automated analysis to detect axillary lymph node metastasis. The aim of this study was to develop and test automated quantitative ultrasound image analysis of axillary lymph nodes for breast cancer staging.
Following an IRB-approved HIPAA compliant protocol, ultrasound images of 90 breast cancer patients presenting for lymph node assessment were retrospectively collected. There were 51 node-positive and 39 node-negative patients, yielding images of 223 lymph nodes (109 positive for metastasis and 114 negative for metastasis). The analysis was completely automated apart from the manual indication of the approximate center of each lymph node. Mathematical descriptors of the nodes, which served as image-based biomarkers, were computer-extracted and input to a classifier for the task of distinguishing between positive (i.e., metastatic) and negative lymph nodes. The performance of this task was assessed using receiver operating characteristic (ROC) analysis with evaluation by-node and by-patient using the area under the ROC curve (AUC) as the performance metric.
The AUC was 0.85 (standard error 0.03) for by-node evaluation when distinguishing between positive and negative lymph nodes. The AUC was 0.87 (0.04) for patient-based prognosis, i.e., assessing whether patients were lymph node-positive or lymph node-negative.
Based on these classification results, we conclude that mathematical descriptors of sonographically imaged lymph nodes may be useful as prognostic biomarkers in breast cancer staging and demonstrate potential for predicting patient lymph node status.
超声检查有可能通过自动分析准确地对乳腺癌进行分期,以检测腋窝淋巴结转移。本研究的目的是开发并测试用于乳腺癌分期的腋窝淋巴结自动定量超声图像分析方法。
按照经机构审查委员会(IRB)批准且符合健康保险流通与责任法案(HIPAA)的方案,回顾性收集了90例因淋巴结评估前来就诊的乳腺癌患者的超声图像。其中有51例淋巴结阳性患者和39例淋巴结阴性患者,共获得223个淋巴结的图像(109个有转移阳性,114个无转移阴性)。除了手动指示每个淋巴结的大致中心外,分析完全自动化。作为基于图像的生物标志物的淋巴结数学描述符由计算机提取,并输入到一个分类器中,用于区分阳性(即转移性)和阴性淋巴结。使用受试者操作特征(ROC)分析评估此任务的性能,通过ROC曲线下面积(AUC)作为性能指标,按淋巴结和按患者进行评估。
在区分阳性和阴性淋巴结时,按淋巴结评估的AUC为0.85(标准误差0.03)。基于患者的预后评估(即评估患者是淋巴结阳性还是阴性)的AUC为0.87(0.04)。
基于这些分类结果,我们得出结论,超声成像淋巴结的数学描述符可能作为乳腺癌分期的预后生物标志物有用,并显示出预测患者淋巴结状态的潜力。