Department of Material and Life Science, Graduate School of Engineering, ALCA, Japan Science and Technology Agency, Osaka University , Suita, Osaka 565-0871, Japan.
J Am Chem Soc. 2013 Apr 3;135(13):5052-61. doi: 10.1021/ja311662w. Epub 2013 Mar 25.
The reactivity of a nonheme iron(IV)-oxo complex, (N4Py)Fe(IV)(O) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine), was markedly enhanced by perchloric acid (70% HClO4) in the oxidation of toluene derivatives. Toluene, which has a high one-electron oxidation potential (Eox = 2.20 V vs SCE), was oxidized by (N4Py)Fe(IV)(O) in the presence of HClO4 in acetonitrile (MeCN) to yield a stoichiometric amount of benzyl alcohol, in which (N4Py)Fe(IV)(O) was reduced to (N4Py)Fe(III)(OH2). The second-order rate constant (kobs) of the oxidation of toluene derivatives by (N4Py)Fe(IV)(O) increased with increasing concentration of HClO4, showing the first-order dependence on [HClO4]. A significant kinetic isotope effect (KIE) was observed when mesitylene was replaced by mesitylene-d12 in the oxidation with (N4Py)Fe(IV)(O) in the absence of HClO4 in MeCN at 298 K. The KIE value drastically decreased from KIE = 31 in the absence of HClO4 to KIE = 1.0 with increasing concentration of HClO4, accompanied by the large acceleration of the oxidation rate. The absence of KIE suggests that electron transfer from a toluene derivative to the protonated iron(IV)-oxo complex ((N4Py)Fe(IV)(OH)) is the rate-determining step in the acid-promoted oxidation reaction. The detailed kinetic analysis in light of the Marcus theory of electron transfer has revealed that the acid-promoted C-H bond cleavage proceeds via the rate-determining electron transfer from toluene derivatives to (N4Py)Fe(IV)(OH) through formation of strong precursor complexes between toluene derivatives and (N4Py)Fe(IV)(OH).
非血红素铁(IV)-氧配合物[(N4Py)Fe(IV)(O)]^(2+)(N4Py= N,N-双(2-吡啶基甲基)-N-双(2-吡啶基)甲胺)的反应性在高氯酸(70% HClO4)存在下显著增强,可促进甲苯衍生物的氧化。甲苯具有较高的单电子氧化电位(Eox=2.20 V 相对于 SCE),在 HClO4 存在下,[(N4Py)Fe(IV)(O)]^(2+)在乙腈(MeCN)中氧化生成等摩尔量的苄醇,其中[(N4Py)Fe(IV)(O)]^(2+)被还原为[(N4Py)Fe(III)(OH2)]^(3+)。[(N4Py)Fe(IV)(O)]^(2+)氧化甲苯衍生物的二级速率常数(kobs)随 HClO4 浓度的增加而增加,表现出对 HClO4 的一级依赖性。在 MeCN 中,在不存在 HClO4 的情况下,用[(N4Py)Fe(IV)(O)]^(2+)氧化间二甲苯时,观察到显著的动力学同位素效应(KIE),当用间二甲苯-d12 取代间二甲苯时。在 298 K 时,在 MeCN 中,当不存在 HClO4 时,KIE 值从无 HClO4 时的 KIE=31 急剧下降到 KIE=1.0,同时氧化速率大大加快。不存在 KIE 表明,从甲苯衍生物向质子化铁(IV)-氧配合物([(N4Py)Fe(IV)(OH)]^(3+))的电子转移是酸促进氧化反应的速率决定步骤。根据电子转移的 Marcus 理论进行的详细动力学分析表明,酸促进的 C-H 键断裂是通过甲苯衍生物与[(N4Py)Fe(IV)(OH)]^(3+)之间形成强前体配合物,从甲苯衍生物向[(N4Py)Fe(IV)(OH)]^(3+)进行速率决定的电子转移来进行的。