Suppr超能文献

基于水平集正则化的增强压缩感知重建。

Enhanced compressed sensing recovery with level set normals.

机构信息

Signal Processing Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.

出版信息

IEEE Trans Image Process. 2013 Jul;22(7):2611-26. doi: 10.1109/TIP.2013.2253484. Epub 2013 Mar 20.

Abstract

We propose a compressive sensing algorithm that exploits geometric properties of images to recover images of high quality from few measurements. The image reconstruction is done by iterating the two following steps: 1) estimation of normal vectors of the image level curves, and 2) reconstruction of an image fitting the normal vectors, the compressed sensing measurements, and the sparsity constraint. The proposed technique can naturally extend to nonlocal operators and graphs to exploit the repetitive nature of textured images to recover fine detail structures. In both cases, the problem is reduced to a series of convex minimization problems that can be efficiently solved with a combination of variable splitting and augmented Lagrangian methods, leading to fast and easy-to-code algorithms. Extended experiments show a clear improvement over related state-of-the-art algorithms in the quality of the reconstructed images and the robustness of the proposed method to noise, different kind of images, and reduced measurements.

摘要

我们提出了一种压缩感知算法,该算法利用图像的几何性质从少量测量值中恢复高质量的图像。图像重建通过迭代以下两个步骤来完成:1)估计图像水平曲线的法向量,2)重建一个拟合法向量、压缩感知测量值和稀疏约束的图像。所提出的技术可以自然地扩展到非局部算子和图,以利用纹理图像的重复性来恢复精细的细节结构。在这两种情况下,问题都可以简化为一系列凸最小化问题,可以通过变量分裂和增广拉格朗日方法的组合有效地解决,从而得到快速且易于编码的算法。扩展实验表明,与相关的最先进算法相比,该方法在重建图像的质量和对噪声、不同类型的图像和减少的测量值的稳健性方面都有明显的改进。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验