Suppr超能文献

提高微阵列覆盖率和增大样本量对未来全基因组关联研究的影响。

The impact of improved microarray coverage and larger sample sizes on future genome-wide association studies.

机构信息

Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94158-9001, USA.

出版信息

Genet Epidemiol. 2013 May;37(4):383-92. doi: 10.1002/gepi.21724. Epub 2013 Mar 25.

Abstract

Genome-wide association studies (GWAS) have identified many single nucleotide polymorphisms (SNPs) associated with complex traits. However, the genetic heritability of most of these traits remains unexplained. To help guide future studies, we address the crucial question of whether future GWAS can detect new SNP associations and explain additional heritability given the new availability of larger GWAS SNP arrays, imputation, and reduced genotyping costs. We first describe the pairwise and imputation coverage of all SNPs in the human genome by commercially available GWAS SNP arrays, using the 1000 Genomes Project as a reference. Next, we describe the findings from 6 years of GWAS of 172 chronic diseases, calculating the power to detect each of them while taking array coverage and sample size into account. We then calculate the power to detect these SNP associations under different conditions using improved coverage and/or sample sizes. Finally, we estimate the percentages of SNP associations and heritability previously detected and detectable by future GWAS under each condition. Overall, we estimated that previous GWAS have detected less than one-fifth of all GWAS-detectable SNPs underlying chronic disease. Furthermore, increasing sample size has a much larger impact than increasing coverage on the potential of future GWAS to detect additional SNP-disease associations and heritability.

摘要

全基因组关联研究(GWAS)已经确定了许多与复杂性状相关的单核苷酸多态性(SNPs)。然而,这些性状的大部分遗传率仍然无法解释。为了帮助指导未来的研究,我们解决了一个关键问题,即在新的更大的 GWAS SNP 阵列、内插和降低基因分型成本的可用性的情况下,未来的 GWAS 是否可以检测到新的 SNP 关联并解释额外的遗传率。

我们首先描述了商业上可用的 GWAS SNP 阵列对人类基因组中所有 SNPs 的成对和内插覆盖情况,使用 1000 基因组计划作为参考。接下来,我们描述了 6 年来对 172 种慢性疾病的 GWAS 研究结果,在考虑到阵列覆盖和样本量的情况下,计算了每种疾病的检测能力。然后,我们根据不同的条件计算了在改进的覆盖范围和/或样本量下检测这些 SNP 关联的能力。最后,我们估计了在每种条件下,先前检测到的和未来 GWAS 可检测到的 SNP 关联和遗传率的百分比。

总的来说,我们估计以前的 GWAS 检测到的慢性疾病相关的所有 GWAS 可检测 SNPs 不到五分之一。此外,增加样本量对未来 GWAS 检测到额外的 SNP-疾病关联和遗传率的潜力的影响要大于增加覆盖范围。

相似文献

引用本文的文献

2
Rare Coding Variants Associated with Breast Cancer.与乳腺癌相关的罕见编码变异。
Adv Exp Med Biol. 2021;1187:435-453. doi: 10.1007/978-981-32-9620-6_23.

本文引用的文献

3
Five years of GWAS discovery.GWAS 发现的五年。
Am J Hum Genet. 2012 Jan 13;90(1):7-24. doi: 10.1016/j.ajhg.2011.11.029.
8
Genomics for the world.面向全球的基因组学。
Nature. 2011 Jul 13;475(7355):163-5. doi: 10.1038/475163a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验