Suppr超能文献

菌根改变了陆生兰花兜兰对氮的吸收。

Mycorrhizas alter nitrogen acquisition by the terrestrial orchid Cymbidium goeringii.

机构信息

Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China.

出版信息

Ann Bot. 2013 Jun;111(6):1181-7. doi: 10.1093/aob/mct062. Epub 2013 Mar 26.

Abstract

BACKGROUND AND AIMS

Orchid mycorrhizas exhibit a unique type of mycorrhizal symbiosis that occurs between fungi and plants of the family Orchidaceae. In general, the roots of orchids are typically coarse compared with those of other plant species, leading to a considerably low surface area to volume ratio. As a result, orchids are often ill-adapted for direct nutrient acquisition from the soil and so mycorrhizal associations are important. However, the role of the fungal partners in the acquisition of inorganic and organic N by terrestrial orchids has yet to be clarified.

METHODS

Inorganic and amino acid N uptake by non-mycorrhizal and mycorrhizal Cymbidium goeringii seedlings, which were grown in pots in a greenhouse, was investigated using a (15)N-labelling technique in which the tracer was injected at two different soil depths, 2·5 cm or 7·5 cm. Mycorrhizal C. goeringii seedlings were obtained by inoculation with three different mycorrhizal strains isolated from the roots of wild terrestrial orchids (two C. goeringii and one C. sinense).

KEY RESULTS

Non-mycorrhizal C. goeringii primarily took up NO3(-) from tracers injected at 2·5-cm soil depth, whereas C. goeringii inoculated with all three mycorrhiza primarily took up NH4(+) injected at the same depth. Inoculation of the mycorrhizal strain MLX102 (isolated from adult C. sinense) on C. goeringii roots only significantly increased the below-ground biomass of the C. goeringii; however, it enhanced (15)NH4(+) uptake by C. goeringii at 2·5-cm soil depth. Compared to the uptake of tracers injected at 2·5-cm soil depth, the MLX102 fungal strain strongly enhanced glycine-N uptake by C. goeringii from tracers injected at 7·5-cm soil depth. Cymbidium goeringii inoculated with CLB113 and MLX102 fungal strains demonstrated a similar N uptake pattern to tracers injected at 2·5-cm soil depth.

CONCLUSIONS

These findings demonstrate that mycorrhizal fungi are able to switch the primary N source uptake of a terrestrial orchid, in this case C. goeringii, from NO3(-) to NH4(+). The reasons for variation in N uptake in the different soil layers may be due to possible differentiation in the mycorrhizal hyphae of the C. goeringii fungal partner.

摘要

背景与目的

兰科菌根表现出一种独特的菌根共生关系,发生在真菌和兰科植物之间。通常,兰花的根比其他植物物种的根粗,导致表面积与体积的比例相当低。因此,兰花通常不适应直接从土壤中获取营养,因此菌根共生关系很重要。然而,真菌伙伴在陆地兰花获取无机和有机氮中的作用尚未得到澄清。

方法

采用(15)N 标记技术,对温室盆栽中未接种和接种的建兰(Cymbidium goeringii)幼苗在两种不同土壤深度(2.5 cm 或 7.5 cm)下的无机和氨基酸 N 吸收进行了研究。将从野生陆生兰花(两株建兰和一株春兰)根部分离得到的三种不同的菌根菌株接种到建兰幼苗中,获得了菌根建兰幼苗。

主要结果

未接种建兰幼苗主要从 2.5 cm 土壤深度处的示踪剂中吸收 NO3(-),而接种了所有三种菌根的建兰幼苗则主要从同一深度处的示踪剂中吸收 NH4(+)。将菌根菌株 MLX102(从成年春兰中分离得到)接种到建兰根上,仅显著增加了建兰的地下生物量;然而,它增强了建兰在 2.5 cm 土壤深度处对(15)NH4(+)的吸收。与在 2.5 cm 土壤深度处注射示踪剂的吸收相比,MLX102 真菌菌株强烈增强了建兰从 7.5 cm 土壤深度处注射示踪剂中甘氨酸-N 的吸收。接种 CLB113 和 MLX102 真菌菌株的建兰表现出与在 2.5 cm 土壤深度处注射示踪剂相似的氮吸收模式。

结论

这些发现表明,菌根真菌能够使陆生兰花(在此例中为建兰)从硝酸盐(NO3(-))到铵盐(NH4(+))的主要氮源吸收发生转变。在不同土壤层中氮吸收的变化可能是由于建兰真菌伙伴的菌根菌丝的可能分化所致。

相似文献

1
Mycorrhizas alter nitrogen acquisition by the terrestrial orchid Cymbidium goeringii.
Ann Bot. 2013 Jun;111(6):1181-7. doi: 10.1093/aob/mct062. Epub 2013 Mar 26.
5
Inorganic phosphorus nutrition in green-leaved terrestrial orchid seedlings.
Ann Bot. 2022 May 12;129(6):669-678. doi: 10.1093/aob/mcac030.
6
Mycorrhizal acquisition of inorganic phosphorus by the green-leaved terrestrial orchid Goodyera repens.
Ann Bot. 2007 May;99(5):831-4. doi: 10.1093/aob/mcm018. Epub 2007 Mar 5.
8
Effect of light conditions on trophic level and gene expression of partially mycoheterotrophic orchid, .
Plant Signal Behav. 2023 Dec 31;18(1):2180159. doi: 10.1080/15592324.2023.2180159.
9
Mycorrhizal fungi isolated from native terrestrial orchids of pristine regions in Cordoba (Argentina).
Rev Biol Trop. 2015 Mar;63(1):275-83. doi: 10.15517/rbt.v63i1.14226.

引用本文的文献

3
The mycorrhizal fungi of promote the growth of by increasing environmental stress tolerance.
PeerJ. 2021 Dec 6;9:e12555. doi: 10.7717/peerj.12555. eCollection 2021.
4
The Plant Growth-Promoting Fungus MF23 ( sp.) Increases Production of (Orchidaceae) by Affecting Nitrogen Uptake and Assimilation.
Front Plant Sci. 2021 Jul 15;12:693561. doi: 10.3389/fpls.2021.693561. eCollection 2021.
6
Evolutionary history resolves global organization of root functional traits.
Nature. 2018 Mar 1;555(7694):94-97. doi: 10.1038/nature25783. Epub 2018 Feb 21.
7
Ecological significance and complexity of N-source preference in plants.
Ann Bot. 2013 Oct;112(6):957-63. doi: 10.1093/aob/mct157. Epub 2013 Jul 24.

本文引用的文献

1
The biology of myco-heterotrophic ('saprophytic') plants.
New Phytol. 1994 Jun;127(2):171-216. doi: 10.1111/j.1469-8137.1994.tb04272.x.
2
Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance?
New Phytol. 2003 Mar;157(3):475-492. doi: 10.1046/j.1469-8137.2003.00704.x.
4
Arbuscular mycorrhizal fungi and nitrogen uptake.
Arch Microbiol. 2011 Feb;193(2):77-81. doi: 10.1007/s00203-010-0657-6. Epub 2010 Dec 7.
5
Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling.
Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13754-9. doi: 10.1073/pnas.1005874107. Epub 2010 Jul 14.
8
A knight of symbiosis.
New Phytol. 2007;176(3):499-501. doi: 10.1111/j.1469-8137.2007.02259.x.
9
Mycorrhizal acquisition of inorganic phosphorus by the green-leaved terrestrial orchid Goodyera repens.
Ann Bot. 2007 May;99(5):831-4. doi: 10.1093/aob/mcm018. Epub 2007 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验