Suppr超能文献

Notch 和 Nodal 控制叉头框因子表达在海胆多能祖细胞的特化中。

Notch and Nodal control forkhead factor expression in the specification of multipotent progenitors in sea urchin.

机构信息

Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

Development. 2013 Apr;140(8):1796-806. doi: 10.1242/dev.091157.

Abstract

Indirect development, in which embryogenesis gives rise to a larval form, requires that some cells retain developmental potency until they contribute to the different tissues in the adult, including the germ line, in a later, post-embryonic phase. In sea urchins, the coelomic pouches are the major contributor to the adult, but how coelomic pouch cells (CPCs) are specified during embryogenesis is unknown. Here we identify the key signaling inputs into the CPC specification network and show that the forkhead factor foxY is the first transcription factor specifically expressed in CPC progenitors. Through dissection of its cis-regulatory apparatus we determine that the foxY expression pattern is the result of two signaling inputs: first, Delta/Notch signaling activates foxY in CPC progenitors; second, Nodal signaling restricts its expression to the left side, where the adult rudiment will form, through direct repression by the Nodal target pitx2. A third signal, Hedgehog, is required for coelomic pouch morphogenesis and institution of laterality, but does not directly affect foxY transcription. Knockdown of foxY results in a failure to form coelomic pouches and disrupts the expression of virtually all transcription factors known to be expressed in this cell type. Our experiments place foxY at the top of the regulatory hierarchy underlying the specification of a cell type that maintains developmental potency.

摘要

间接发育,其中胚胎发生导致幼虫形式,需要一些细胞保持发育潜能,直到它们在后胚胎期为成年的不同组织做出贡献,包括生殖系。在海胆中,体腔囊是成年的主要贡献者,但在胚胎发生过程中体腔囊细胞 (CPC) 如何被指定尚不清楚。在这里,我们确定了 CPC 特化网络的关键信号输入,并表明叉头因子 foxY 是第一个在 CPC 祖细胞中特异性表达的转录因子。通过对其顺式调节装置的剖析,我们确定 foxY 的表达模式是两个信号输入的结果:首先,Delta/Notch 信号在 CPC 祖细胞中激活 foxY;其次,Nodal 信号通过直接抑制 Nodal 靶基因 pitx2 将其表达限制在左侧,即成年原基形成的位置。第三个信号 Hedgehog 是体腔囊形态发生和侧性建立所必需的,但不会直接影响 foxY 转录。foxY 的敲低导致体腔囊无法形成,并破坏了几乎所有已知在这种细胞类型中表达的转录因子的表达。我们的实验将 foxY 置于维持发育潜能的细胞类型特化的调控层次结构的顶端。

相似文献

2
Distinct transcriptional regulation of Nanos2 in the germ line and soma by the Wnt and delta/notch pathways.
Dev Biol. 2019 Aug 1;452(1):34-42. doi: 10.1016/j.ydbio.2019.04.010. Epub 2019 May 7.
3
Axial patterning interactions in the sea urchin embryo: suppression of nodal by Wnt1 signaling.
Development. 2012 May;139(9):1662-9. doi: 10.1242/dev.075051. Epub 2012 Mar 21.
4
CRISPR-Cas9 editing of non-coding genomic loci as a means of controlling gene expression in the sea urchin.
Dev Biol. 2021 Apr;472:85-97. doi: 10.1016/j.ydbio.2021.01.003. Epub 2021 Jan 19.
5
The forkhead transcription factor FoxY regulates Nanos.
Mol Reprod Dev. 2012 Oct;79(10):680-8. doi: 10.1002/mrd.22073. Epub 2012 Aug 15.
8
Diversification of oral and aboral mesodermal regulatory states in pregastrular sea urchin embryos.
Dev Biol. 2013 Mar 1;375(1):92-104. doi: 10.1016/j.ydbio.2012.11.033. Epub 2012 Dec 19.
10
Effects of Nodal inhibition on development of temnopleurid sea urchins.
Evol Dev. 2018 May;20(3-4):91-99. doi: 10.1111/ede.12254. Epub 2018 May 28.

引用本文的文献

1
Combinatorial regulatory states define cell fate diversity during embryogenesis.
Nat Commun. 2024 Aug 9;15(1):6841. doi: 10.1038/s41467-024-50822-y.
2
Molecular mechanisms of tubulogenesis revealed in the sea star hydro-vascular organ.
Nat Commun. 2023 May 9;14(1):2402. doi: 10.1038/s41467-023-37947-2.
3
Single-cell RNA-sequencing analysis of early sea star development.
Development. 2022 Nov 15;149(22). doi: 10.1242/dev.200982. Epub 2022 Nov 18.
4
Micromere formation and its evolutionary implications in the sea urchin.
Curr Top Dev Biol. 2022;146:211-238. doi: 10.1016/bs.ctdb.2021.10.008. Epub 2021 Dec 3.
5
Cell-fate transition and determination analysis of mouse male germ cells throughout development.
Nat Commun. 2021 Nov 25;12(1):6839. doi: 10.1038/s41467-021-27172-0.
7
A single cell RNA sequencing resource for early sea urchin development.
Development. 2020 Sep 11;147(17):dev191528. doi: 10.1242/dev.191528.
8
Single cell RNA-seq in the sea urchin embryo show marked cell-type specificity in the Delta/Notch pathway.
Mol Reprod Dev. 2019 Aug;86(8):931-934. doi: 10.1002/mrd.23181. Epub 2019 Jun 14.
9
Distinct transcriptional regulation of Nanos2 in the germ line and soma by the Wnt and delta/notch pathways.
Dev Biol. 2019 Aug 1;452(1):34-42. doi: 10.1016/j.ydbio.2019.04.010. Epub 2019 May 7.
10
Methods to label, isolate, and image sea urchin small micromeres, the primordial germ cells (PGCs).
Methods Cell Biol. 2019;150:269-292. doi: 10.1016/bs.mcb.2018.11.007. Epub 2019 Jan 8.

本文引用的文献

3
Diversification of oral and aboral mesodermal regulatory states in pregastrular sea urchin embryos.
Dev Biol. 2013 Mar 1;375(1):92-104. doi: 10.1016/j.ydbio.2012.11.033. Epub 2012 Dec 19.
4
Opposing nodal and BMP signals regulate left-right asymmetry in the sea urchin larva.
PLoS Biol. 2012;10(10):e1001402. doi: 10.1371/journal.pbio.1001402. Epub 2012 Oct 9.
5
Left-right patterning: conserved and divergent mechanisms.
Development. 2012 Sep;139(18):3257-62. doi: 10.1242/dev.061606.
6
The forkhead transcription factor FoxY regulates Nanos.
Mol Reprod Dev. 2012 Oct;79(10):680-8. doi: 10.1002/mrd.22073. Epub 2012 Aug 15.
7
Direct and indirect control of oral ectoderm regulatory gene expression by Nodal signaling in the sea urchin embryo.
Dev Biol. 2012 Sep 15;369(2):377-85. doi: 10.1016/j.ydbio.2012.06.022. Epub 2012 Jul 6.
8
A comprehensive analysis of Delta signaling in pre-gastrular sea urchin embryos.
Dev Biol. 2012 Apr 1;364(1):77-87. doi: 10.1016/j.ydbio.2012.01.017. Epub 2012 Jan 27.
9
Synthetic in vivo validation of gene network circuitry.
Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1548-53. doi: 10.1073/pnas.1119905109. Epub 2012 Jan 11.
10
Germline stem cells.
Cold Spring Harb Perspect Biol. 2011 Nov 1;3(11):a002642. doi: 10.1101/cshperspect.a002642.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验