Suppr超能文献

将配体喷射到蛋白质-蛋白质界面中:一种有前途的策略,可以破坏 tRNA 修饰酶中的界面形成并使其不稳定。

Launching spiking ligands into a protein-protein interface: a promising strategy to destabilize and break interface formation in a tRNA modifying enzyme.

机构信息

Institut für Pharmazeutische Chemie, Philipps-Universität Marburg , Marbacher Weg 6, 35032 Marburg, Germany.

出版信息

ACS Chem Biol. 2013;8(6):1163-78. doi: 10.1021/cb400020b. Epub 2013 May 14.

Abstract

Apart from competitive active-site inhibition of protein function, perturbance of protein-protein interactions by small molecules in oligodomain enzymes opens new perspectives for innovative therapeutics. tRNA-guanine transglycosylase (TGT), a potential target to treat shigellosis, is active only as the homodimer. Consequently, disruption of the dimer interface by small molecules provides a novel inhibition mode. A special feature of this enzyme is the short distance between active site and rim of the dimer interface. This suggests design of expanded active-site inhibitors decorated with rigid, needle-type substituents to spike into potential hot spots of the interaction interface. Ligands with attached ethinyl-type substituents have been synthesized and characterized by Kd measurements, crystallography, noncovalent mass spectrometry, and computer simulations. In contrast to previously determined crystal structures with nonextended active-site inhibitors, a well-defined loop-helix motif, involved in several contacts across the dimer interface, falls apart and suggests enhanced flexibility once the spiking ligands are bound. Mass spectrometry indicates significant destabilization but not full disruption of the complexed TGT homodimer in solution. As directed interactions of the loop-helix motif obviously do not determine dimer stability, a structurally conserved hydrophobic patch composed of several aromatic amino acids is suggested as interaction hot spot. The residues of this patch reside on a structurally highly conserved helix-turn-helix motif, which remains unaffected by the bound spiking ligands. Nevertheless, it is shielded from solvent access by the loop-helix motif that becomes perturbed upon binding of the spiking ligands, which serves as a possible explanation for reduced interface stability.

摘要

除了竞争性的活性位点抑制蛋白质功能外,小分子对寡结构域酶中蛋白质-蛋白质相互作用的干扰为创新治疗开辟了新的前景。tRNA 鸟嘌呤转移酶(TGT)是治疗志贺氏菌病的潜在靶点,只有作为同源二聚体才具有活性。因此,小分子破坏二聚体界面提供了一种新的抑制模式。这种酶的一个特点是活性位点和二聚体界面边缘之间的距离很短。这表明可以设计带有刚性、针状取代基的扩展活性位点抑制剂,以刺入微点相互作用界面。已经合成并通过 Kd 测量、晶体学、非共价质谱和计算机模拟对带有附加乙炔基取代基的配体进行了表征。与以前用非扩展活性位点抑制剂确定的晶体结构相比,涉及二聚体界面几个接触点的明确的环-螺旋基序会分解,并表明一旦结合了刺突配体,其灵活性会增强。质谱表明,溶液中结合的 TGT 同源二聚体明显不稳定,但没有完全破坏。由于环-螺旋基序的定向相互作用显然不能决定二聚体的稳定性,因此建议将由几个芳香族氨基酸组成的结构保守的疏水区作为相互作用热点。该补丁的残基位于结构高度保守的螺旋-转角-螺旋基序上,该基序不受结合的刺突配体的影响。然而,它被环-螺旋基序屏蔽,该基序在结合刺突配体时会受到干扰,这可以解释界面稳定性降低的原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验