Jakobi Stephan, Nguyen Phong T X, Debaene François, Cianférani Sarah, Reuter Klaus, Klebe Gerhard
†Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany.
‡BioOrganic Mass Spectrometry Laboratory (LSMBO), Université de Strasbourg, IPHC, 25 rue Becquerel, 67087 Strasbourg, France.
ACS Chem Biol. 2015 Aug 21;10(8):1897-907. doi: 10.1021/acschembio.5b00028. Epub 2015 May 26.
Shigella bacteria constitute the causative agent of bacillary dysentery, an acute inflammatory disease causing the death of more than one million humans per year. A null mutation in the tgt gene encoding the tRNA-modifying enzyme tRNA-guanine transglycosylase (Tgt) was found to drastically decrease the pathogenicity of Shigella bacteria, suggesting the use of Tgt as putative target for selective antibiotics. The enzyme is only functionally active as a homodimer; thus, interference with the formation of its protein-protein interface is an attractive opportunity for therapeutic intervention. To better understand the driving forces responsible for the assembly, stability, and formation of the homodimer, we studied the properties of the residues that establish the dimer interface in detail. We performed site-directed mutagenesis and controlled shifts in the monomer/dimer equilibrium ratio in solution in a concentration-dependent manner by native mass spectrometry and used crystal structure analysis to elucidate the geometrical modulations resulting from mutational variations. The wild-type enzyme exhibits nearly exclusive dimer geometry. A patch of four aromatic amino acids, embedded into a ring of hydrophobic residues and further stabilized by a network of H-bonds, is essential for the stability of the dimer's contact. Accordingly, any perturbance in the constitution of this aromatic patch by nonaromatic residues reduces dimer stability significantly, with some of these exchanges resulting in a nearly exclusively monomeric state. Apart from the aromatic hot spot, the interface comprises an extended loop-helix motif that exhibits remarkable flexibility. In the destabilized mutated variants, the loop-helix motif adopts deviating conformations in the interface region, and a number of water molecules, penetrating into the interface, are observed.
志贺氏菌是细菌性痢疾的病原体,细菌性痢疾是一种急性炎症性疾病,每年导致超过100万人死亡。编码tRNA修饰酶tRNA-鸟嘌呤转糖基酶(Tgt)的tgt基因中的无效突变被发现会大幅降低志贺氏菌的致病性,这表明可将Tgt用作选择性抗生素的假定靶点。该酶仅作为同二聚体具有功能活性;因此,干扰其蛋白质-蛋白质界面的形成是治疗干预的一个有吸引力的机会。为了更好地理解负责同二聚体组装、稳定性和形成的驱动力,我们详细研究了建立二聚体界面的残基的性质。我们进行了定点诱变,并通过天然质谱以浓度依赖的方式在溶液中控制单体/二聚体平衡比的变化,并使用晶体结构分析来阐明突变变异导致的几何调制。野生型酶几乎呈现出唯一的二聚体几何结构。一片由四个芳香族氨基酸组成的区域,嵌入到疏水残基环中,并通过氢键网络进一步稳定,对于二聚体接触的稳定性至关重要。因此,该芳香族区域的组成被非芳香族残基干扰会显著降低二聚体稳定性,其中一些交换会导致几乎完全是单体状态。除了芳香族热点外,界面还包括一个延伸的环-螺旋基序,该基序表现出显著的灵活性。在不稳定的突变变体中,环-螺旋基序在界面区域采用偏离的构象,并且观察到一些水分子渗透到界面中。