Suppr超能文献

动态范围悖论:一种用于强度变化检测的中心听觉模型。

The dynamic range paradox: a central auditory model of intensity change detection.

机构信息

Centre for Digital Music, Queen Mary University of London, London, United Kingdom.

出版信息

PLoS One. 2013;8(2):e57497. doi: 10.1371/journal.pone.0057497. Epub 2013 Feb 28.

Abstract

In this paper we use empirical loudness modeling to explore a perceptual sub-category of the dynamic range problem of auditory neuroscience. Humans are able to reliably report perceived intensity (loudness), and discriminate fine intensity differences, over a very large dynamic range. It is usually assumed that loudness and intensity change detection operate upon the same neural signal, and that intensity change detection may be predicted from loudness data and vice versa. However, while loudness grows as intensity is increased, improvement in intensity discrimination performance does not follow the same trend and so dynamic range estimations of the underlying neural signal from loudness data contradict estimations based on intensity just-noticeable difference (JND) data. In order to account for this apparent paradox we draw on recent advances in auditory neuroscience. We test the hypothesis that a central model, featuring central adaptation to the mean loudness level and operating on the detection of maximum central-loudness rate of change, can account for the paradoxical data. We use numerical optimization to find adaptation parameters that fit data for continuous-pedestal intensity change detection over a wide dynamic range. The optimized model is tested on a selection of equivalent pseudo-continuous intensity change detection data. We also report a supplementary experiment which confirms the modeling assumption that the detection process may be modeled as rate-of-change. Data are obtained from a listening test (N = 10) using linearly ramped increment-decrement envelopes applied to pseudo-continuous noise with an overall level of 33 dB SPL. Increments with half-ramp durations between 5 and 50,000 ms are used. The intensity JND is shown to increase towards long duration ramps (p<10(-6)). From the modeling, the following central adaptation parameters are derived; central dynamic range of 0.215 sones, 95% central normalization, and a central loudness JND constant of 5.5×10(-5) sones per ms. Through our findings, we argue that loudness reflects peripheral neural coding, and the intensity JND reflects central neural coding.

摘要

在本文中,我们使用经验性响度建模来探索听觉神经科学动态范围问题的一个感知子类别。人类能够可靠地报告感知强度(响度),并在非常大的动态范围内区分精细的强度差异。通常假设响度和强度变化检测是基于相同的神经信号进行的,并且强度变化检测可以根据响度数据进行预测,反之亦然。然而,尽管随着强度的增加,响度会增加,但强度辨别性能的提高并不遵循相同的趋势,因此,从响度数据推断出的潜在神经信号的动态范围估计与基于强度刚可察觉差异(JND)数据的估计相矛盾。为了解释这种明显的悖论,我们借鉴了听觉神经科学的最新进展。我们检验了一个假设,即一个中央模型,其特征是对平均响度水平的中央适应,并且对最大中央响度变化率的检测起作用,该模型可以解释这种矛盾的数据。我们使用数值优化来找到适应参数,以适应广泛动态范围内的连续音垫强度变化检测数据。优化后的模型在一系列等效的伪连续强度变化检测数据上进行了测试。我们还报告了一个补充实验,该实验证实了建模假设,即检测过程可以建模为变化率。数据是通过使用线性斜坡递增-递减包络在 33 dB SPL 总水平的伪连续噪声上进行的听力测试(N=10)获得的。使用半斜坡持续时间在 5 和 50000 毫秒之间的增量。结果表明,强度 JND 随着长持续时间斜坡而增加(p<10(-6))。通过建模,得出以下中央适应参数:中央动态范围为 0.215 宋,95%中央归一化,以及中央响度 JND 常数为 5.5×10(-5) 宋/毫秒。通过我们的研究结果,我们认为响度反映了外围神经编码,而强度 JND 反映了中央神经编码。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3f5/3585315/74a6c65410c9/pone.0057497.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验