Department of Bioengineering, Y2E2-269B, 473 Via Ortega, Stanford, CA 94305-4201, USA.
Science. 2013 May 3;340(6132):599-603. doi: 10.1126/science.1232758. Epub 2013 Mar 28.
Organisms must process information encoded via developmental and environmental signals to survive and reproduce. Researchers have also engineered synthetic genetic logic to realize simpler, independent control of biological processes. We developed a three-terminal device architecture, termed the transcriptor, that uses bacteriophage serine integrases to control the flow of RNA polymerase along DNA. Integrase-mediated inversion or deletion of DNA encoding transcription terminators or a promoter modulates transcription rates. We realized permanent amplifying AND, NAND, OR, XOR, NOR, and XNOR gates actuated across common control signal ranges and sequential logic supporting autonomous cell-cell communication of DNA encoding distinct logic-gate states. The single-layer digital logic architecture developed here enables engineering of amplifying logic gates to control transcription rates within and across diverse organisms.
生物体必须处理通过发育和环境信号编码的信息,以生存和繁殖。研究人员还设计了合成遗传逻辑,以实现对生物过程更简单、独立的控制。我们开发了一种三端器件架构,称为转录器,该架构使用噬菌体丝氨酸整合酶来控制 RNA 聚合酶在 DNA 上的流动。整合酶介导的 DNA 编码转录终止子或启动子的反转或缺失调节转录率。我们实现了跨常见控制信号范围的永久性放大 AND、NAND、OR、XOR、NOR 和 XNOR 门,以及支持自主细胞间 DNA 编码不同逻辑门状态的顺序逻辑。这里开发的单层数字逻辑架构使工程放大逻辑门能够控制不同生物体内部和之间的转录率。