Cao Wenjun, Liu Lili, Sun Qingxu, Shan Yang, Chen Ye
Longping Agricultural College, Hunan University, Changsha, China.
State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Nat Commun. 2025 Jul 31;16(1):7037. doi: 10.1038/s41467-025-62464-9.
Engineering genetic circuits to process complex biological signals remains a significant challenge due to non-orthogonal signal responses that limit precise control. In this study, we introduce a framework that integrates orthogonal operational amplifiers (OAs) into standardized biological processes to enable efficient signal decomposition and amplification. By engineering σ/anti-σ pairs, varying ribosome binding site (RBS) strengths, and utilizing both open-loop and closed-loop configurations, we design scalable OAs that enhance the precision, adaptability, and signal-to-noise ratio of genetic circuits. Additionally, we present a prototype whole-cell biosensor capable of detecting transcriptional changes in response to growth conditions, enabling growth-state-responsive induction systems. These systems provide dynamic gene expression control without external inducers, offering significant advantages for metabolic engineering applications. We also apply our framework to mitigate crosstalk in multi-signal systems, ensuring independent control over each signal channel within complex biological networks. Our approach enhances synthetic biology systems by robust signal processing and precise dynamic regulation.
由于非正交信号响应限制了精确控制,设计能够处理复杂生物信号的基因电路仍然是一项重大挑战。在本研究中,我们引入了一个框架,将正交运算放大器(OAs)集成到标准化生物过程中,以实现高效的信号分解和放大。通过设计σ/反σ对、改变核糖体结合位点(RBS)强度,并利用开环和闭环配置,我们设计了可扩展的运算放大器,提高了基因电路的精度、适应性和信噪比。此外,我们展示了一种能够检测响应生长条件的转录变化的全细胞生物传感器原型,实现了生长状态响应诱导系统。这些系统无需外部诱导剂即可提供动态基因表达控制,为代谢工程应用提供了显著优势。我们还应用我们的框架来减轻多信号系统中的串扰,确保对复杂生物网络内的每个信号通道进行独立控制。我们的方法通过强大的信号处理和精确的动态调节增强了合成生物学系统。