School of Biosciences, University of Birmingham, Birmingham, United Kingdom.
J Bacteriol. 2013 Jun;195(11):2518-29. doi: 10.1128/JB.02300-12. Epub 2013 Mar 29.
Neisseria gonorrhoeae is a microaerophile that, when oxygen availability is limited, supplements aerobic respiration with a truncated denitrification pathway, nitrite reduction to nitrous oxide. We demonstrate that the cccA gene of Neisseria gonorrhoeae strain F62 (accession number NG0292) is expressed, but the product, cytochrome c2, accumulates to only low levels. Nevertheless, a cccA mutant reduced nitrite at about half the rate of the parent strain. We previously reported that cytochromes c4 and c5 transfer electrons to cytochrome oxidase cbb3 by two independent pathways and that the CcoP subunit of cytochrome oxidase cbb3 transfers electrons to nitrite. We show that mutants defective in either cytochrome c4 or c5 also reduce nitrite more slowly than the parent. By combining mutations in cccA (Δc2), cycA (Δc4), cycB (Δc5), and ccoP (ccoP-C368A), we demonstrate that cytochrome c2 is required for electron transfer from cytochrome c4 via the third heme group of CcoP to the nitrite reductase, AniA, and that cytochrome c5 transfers electrons to nitrite reductase by an independent pathway. We propose that cytochrome c2 forms a complex with cytochrome oxidase. If so, the redox state of cytochrome c2 might regulate electron transfer to nitrite or oxygen. However, our data are more consistent with a mechanism in which cytochrome c2 and the CcoQ subunit of cytochrome oxidase form alternative complexes that preferentially catalyze nitrite and oxygen reduction, respectively. Comparison with the much simpler electron transfer pathway for nitrite reduction in the meningococcus provides fascinating insights into niche adaptation within the pathogenic neisseriae.
淋病奈瑟菌是一种微需氧菌,当氧气供应有限时,它会通过截断的反硝化途径补充有氧呼吸,将亚硝酸盐还原为一氧化二氮。我们证明,淋病奈瑟菌 F62 株(登录号 NG0292)的 cccA 基因表达,但产物细胞色素 c2 仅积累到低水平。然而,cccA 突变体将亚硝酸盐还原的速度比亲本菌株降低了约一半。我们之前报道过细胞色素 c4 和 c5 通过两条独立的途径将电子传递给细胞色素氧化酶 cbb3,并且细胞色素氧化酶 cbb3 的 CcoP 亚基将电子传递给亚硝酸盐。我们表明,细胞色素 c4 或 c5 缺陷的突变体将亚硝酸盐还原的速度也比亲本慢。通过结合 cccA(Δc2)、cycA(Δc4)、cycB(Δc5)和 ccoP(ccoP-C368A)的突变,我们证明细胞色素 c2 是将电子从细胞色素 c4 通过 CcoP 的第三个血红素基团传递到亚硝酸盐还原酶 AniA 所必需的,并且细胞色素 c5 通过独立途径将电子传递给亚硝酸盐还原酶。我们提出细胞色素 c2 与细胞色素氧化酶形成复合物。如果是这样,细胞色素 c2 的氧化还原状态可能会调节电子向亚硝酸盐或氧气的转移。然而,我们的数据更符合这样一种机制,即细胞色素 c2 和细胞色素氧化酶的 CcoQ 亚基形成替代复合物,分别优先催化亚硝酸盐和氧气还原。与脑膜炎奈瑟菌中更简单的亚硝酸盐还原电子传递途径相比,这为病原体奈瑟菌的生态位适应提供了引人入胜的见解。