Suppr超能文献

基于 Grassmannian 正则化的结构多视图嵌入图像分类方法。

Grassmannian regularized structured multi-view embedding for image classification.

机构信息

School of Computer and Communication Science, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland.

出版信息

IEEE Trans Image Process. 2013 Jul;22(7):2646-60. doi: 10.1109/TIP.2013.2255300. Epub 2013 Mar 28.

Abstract

Images are usually represented by features from multiple views, e.g., color and texture. In image classification, the goal is to fuse all the multi-view features in a reasonable manner and achieve satisfactory classification performance. However, the features are often different in nature and it is nontrivial to fuse them. Particularly, some extracted features are redundant or noisy and are consequently not discriminative for classification. To alleviate these problems in an image classification context, we propose in this paper a novel multi-view embedding framework, termed as Grassmannian regularized structured multi-view embedding, or GrassReg for short. GrassReg transfers the graph Laplacian obtained from each view to a point on the Grassmann manifold and penalizes the disagreement between different views according to Grassmannian distance. Therefore, a view that is consistent with others is more important than a view that disagrees with others for learning a unified subspace for multi-view data representation. In addition, we impose the group sparsity penalty onto the low-dimensional embeddings obtained hence they can better explore the group structure of the intrinsic data distribution. Empirically, we compare GrassReg with representative multi-view algorithms and show the effectiveness of GrassReg on a number of multi-view image data sets.

摘要

图像通常由多视图特征表示,例如颜色和纹理。在图像分类中,目标是合理地融合所有多视图特征,并达到令人满意的分类性能。然而,特征通常在性质上是不同的,融合它们并不是一件简单的事情。特别是,一些提取的特征是冗余的或嘈杂的,因此对于分类没有判别力。为了解决图像分类背景下的这些问题,我们提出了一种新的多视图嵌入框架,称为 Grassmannian 正则结构化多视图嵌入,简称 GrassReg。GrassReg 将从每个视图获得的图拉普拉斯算子转换为 Grassmann 流形上的一个点,并根据 Grassmann 距离对不同视图之间的差异进行惩罚。因此,对于学习多视图数据表示的统一子空间,与其他视图一致的视图比与其他视图不一致的视图更为重要。此外,我们对得到的低维嵌入施加了群组稀疏性惩罚,因此它们可以更好地探索内在数据分布的群组结构。在实验中,我们将 GrassReg 与有代表性的多视图算法进行了比较,并在多个多视图图像数据集上展示了 GrassReg 的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验