School of Computer Science and Information, AnHui Polytechnic University, WuHu, AnHui 241000, China.
School of Computer Science and Information, AnHui Polytechnic University, WuHu, AnHui 241000, China.
Neural Netw. 2020 May;125:214-223. doi: 10.1016/j.neunet.2020.02.014. Epub 2020 Feb 25.
In this paper, we propose a novel hyper-Laplacian regularized multiview subspace clustering with low-rank tensor constraint method, which is referred as HLR-MSCLRT. In the HLR-MSCLRT model, the subspace representation matrices of different views are stacked as a tensor, and then the high order correlations among data can be captured. To reduce the redundancy information of the learned subspace representations, a low-rank constraint is adopted to the constructed tensor. Since data in the real world often reside in multiple nonlinear subspaces, the HLR-MSCLRT model utilizes the hyper-Laplacian graph regularization to preserve the local geometry structure embedded in a high-dimensional ambient space. An efficient algorithm is also presented to solve the optimization problem of the HLR-MSCLRT model. The experimental results on some data sets show that the proposed HLR-MSCLRT model outperforms many state-of-the-art multi-view clustering approaches.
在本文中,我们提出了一种新颖的基于超拉普拉斯正则化和低秩张量约束的多视图子空间聚类方法,称为 HLR-MSCLRT。在 HLR-MSCLRT 模型中,不同视图的子空间表示矩阵被堆叠成一个张量,然后可以捕捉数据之间的高阶相关性。为了减少学习到的子空间表示的冗余信息,对构建的张量采用低秩约束。由于现实世界中的数据通常存在于多个非线性子空间中,HLR-MSCLRT 模型利用超拉普拉斯图正则化来保留嵌入在高维环境空间中的局部几何结构。还提出了一种有效的算法来解决 HLR-MSCLRT 模型的优化问题。在一些数据集上的实验结果表明,所提出的 HLR-MSCLRT 模型优于许多最新的多视图聚类方法。