CareFusion, Clinical Research, San Diego, CA 92130, USA.
Med Care. 2013 May;51(5):437-45. doi: 10.1097/MLR.0b013e318287d57d.
Growth and development in early childhood are associated with rapid physiological changes. We sought to develop and validate age-specific mortality risk adjustment models for hospitalized pediatric patients using objective physiological variables on admission in addition to administrative variables.
Age-specific laboratory and vital sign variables were crafted for neonates (up to 30 d old), infants/toddlers (1-23 mo), and children (2-17 y). We fit 3 logistic regression models, 1 for each age group, using a derivation cohort comprising admissions from 2000-2001 in 215 hospitals. We validated the models with a separate validation cohort comprising admissions from 2002-2007 in 62 hospitals. We used the c statistic to assess model fit.
The derivation cohort comprised 93,011 neonates (0.55% mortality), 46,152 infants/toddlers (0.37% mortality), and 104,010 children (0.40% mortality). The corresponding numbers of admissions (mortality rates) for the validation cohort were 162,131 (0.50%), 33,818 (0.09%), and 73,362 (0.20%), respectively. The c statistics for the 3 models were 0.94, 0.91, and 0.92, respectively, for the derivation cohort and 0.91, 0.86, and 0.93, respectively, for the validation cohort. The relative contributions of physiological versus administrative variables to the model fit were 52% versus 48% (neonates), 93% versus 7% (infants/toddlers), and 82% versus 18% (children).
The thresholds for physiological determinants varied by age. Common physiological variables assessed on admission contributed significantly to predicting mortality for hospitalized pediatric patients. These models may have practical utility in risk adjustment for pediatric outcomes and comparative effectiveness research when physiological data are captured through the electronic medical record.
儿童早期的生长发育与快速的生理变化有关。我们试图开发和验证基于入院时客观生理变量的、针对特定年龄段的儿科住院患者死亡率风险调整模型,这些变量除了管理变量外还包括生理变量。
为新生儿(0-30 天)、婴儿/学步儿(1-23 个月)和儿童(2-17 岁)分别制定了特定年龄的实验室和生命体征变量。我们使用来自 215 家医院 2000-2001 年期间的入院数据拟合了 3 个逻辑回归模型,每个模型对应一个年龄组。我们使用来自 62 家医院 2002-2007 年期间的入院数据对模型进行了验证。我们使用 c 统计量来评估模型拟合情况。
原始队列包括 93011 名新生儿(死亡率为 0.55%)、46152 名婴儿/学步儿(死亡率为 0.37%)和 104010 名儿童(死亡率为 0.40%)。验证队列中相应的入院人数(死亡率)分别为 162131 名(0.50%)、33818 名(0.09%)和 73362 名(0.20%)。3 个模型在原始队列中的 c 统计量分别为 0.94、0.91 和 0.92,在验证队列中的 c 统计量分别为 0.91、0.86 和 0.93。生理变量与管理变量对模型拟合的相对贡献分别为 52%和 48%(新生儿)、93%和 7%(婴儿/学步儿)以及 82%和 18%(儿童)。
生理决定因素的阈值因年龄而异。入院时评估的常见生理变量对预测儿科住院患者的死亡率有重要贡献。当生理数据通过电子病历采集时,这些模型可能在儿科结局的风险调整和比较效果研究方面具有实际应用价值。