Suppr超能文献

利用自动化的住院、门诊和实验室数据库对医院住院患者死亡率进行风险调整。

Risk-adjusting hospital inpatient mortality using automated inpatient, outpatient, and laboratory databases.

作者信息

Escobar Gabriel J, Greene John D, Scheirer Peter, Gardner Marla N, Draper David, Kipnis Patricia

机构信息

Kaiser Permanente Division of Research, Systems Research Initiative and Perinatal Research Unit, Oakland, California 94612, USA.

出版信息

Med Care. 2008 Mar;46(3):232-9. doi: 10.1097/MLR.0b013e3181589bb6.

Abstract

OBJECTIVES

To develop a risk-adjustment methodology that maximizes the use of automated physiology and diagnosis data from the time period preceding hospitalization.

DESIGN

: Retrospective cohort study using split-validation and logistic regression.

SETTING

Seventeen hospitals in a large integrated health care delivery system.

SUBJECTS

Patients (n = 259,699) hospitalized between January 2002 and June 2005.

MAIN OUTCOME MEASURES

Inpatient and 30-day mortality.

RESULTS

Inpatient mortality was 3.50%; 30-day mortality was 4.06%. We tested logistic regression models in a randomly chosen derivation dataset consisting of 50% of the records and applied their coefficients to the validation dataset. The final model included sex, age, admission type, admission diagnosis, a Laboratory-based Acute Physiology Score (LAPS), and a COmorbidity Point Score (COPS). The LAPS integrates information from 14 laboratory tests obtained in the 24 hours preceding hospitalization into a single continuous variable. Using Diagnostic Cost Groups software, we categorized patients as having up to 40 different comorbidities based on outpatient and inpatient data from the 12 months preceding hospitalization. The COPS integrates information regarding these 41 comorbidities into a single continuous variable. Our best model for inpatient mortality had a c statistic of 0.88 in the validation dataset, whereas the c statistic for 30-day mortality was 0.86; both models had excellent calibration. Physiologic data accounted for a substantial proportion of the model's predictive ability.

CONCLUSION

Efforts to support improvement of hospital outcomes can take advantage of risk-adjustment methods based on automated physiology and diagnosis data that are not confounded by information obtained after hospital admission.

摘要

目的

开发一种风险调整方法,以最大限度地利用住院前时间段内的自动生理和诊断数据。

设计

采用拆分验证和逻辑回归的回顾性队列研究。

设置

大型综合医疗保健服务系统中的17家医院。

研究对象

2002年1月至2005年6月期间住院的患者(n = 259,699)。

主要观察指标

住院期间及30天死亡率。

结果

住院死亡率为3.50%;30天死亡率为4.06%。我们在一个随机选择的由50%记录组成的推导数据集中测试了逻辑回归模型,并将其系数应用于验证数据集。最终模型包括性别、年龄、入院类型、入院诊断、基于实验室的急性生理评分(LAPS)和合并症点数评分(COPS)。LAPS将住院前24小时内获得的14项实验室检查信息整合为一个单一的连续变量。使用诊断成本分组软件,我们根据住院前12个月的门诊和住院数据将患者分类为患有多达40种不同的合并症。COPS将有关这41种合并症的信息整合为一个单一的连续变量。我们用于住院死亡率的最佳模型在验证数据集中的c统计量为0.88,而30天死亡率的c统计量为0.86;两个模型均具有出色的校准。生理数据占模型预测能力的很大一部分。

结论

支持改善医院结局的努力可以利用基于自动生理和诊断数据的风险调整方法,这些数据不会因入院后获得的信息而混淆。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验