Center for Drug Discovery and Department of Chemistry, Northeastern University, Boston, Massachusetts 02115-5000, USA.
Protein Sci. 2013 Jun;22(6):774-87. doi: 10.1002/pro.2257. Epub 2013 Apr 29.
The membrane-associated serine hydrolase, monoacylglycerol lipase (MGL), is a well-recognized therapeutic target that regulates endocannabinoid signaling. Crystallographic studies, while providing structural information about static MGL states, offer no direct experimental insight into the impact of MGL's membrane association upon its structure-function landscape. We report application of phospholipid bilayer nanodiscs as biomembrane models with which to evaluate the effect of a membrane system on the catalytic properties and conformational dynamics of human MGL (hMGL). Anionic and charge-neutral phospholipid bilayer nanodiscs enhanced hMGL's kinetic properties [apparent maximum velocity (Vmax) and substrate affinity (Km)]. Hydrogen exchange mass spectrometry (HX MS) was used as a conformational analysis method to profile experimentally the extent of hMGL-nanodisc interaction and its impact upon hMGL structure. We provide evidence that significant regions of hMGL lid-domain helix α4 and neighboring helix α6 interact with the nanodisc phospholipid bilayer, anchoring hMGL in a more open conformation to facilitate ligand access to the enzyme's substrate-binding channel. Covalent modification of membrane-associated hMGL by the irreversible carbamate inhibitor, AM6580, shielded the active site region, but did not increase solvent exposure of the lid domain, suggesting that the inactive, carbamylated enzyme remains intact and membrane associated. Molecular dynamics simulations generated conformational models congruent with the open, membrane-associated topology of active and inhibited, covalently-modified hMGL. Our data indicate that hMGL interaction with a phospholipid membrane bilayer induces regional changes in the enzyme's conformation that favor its recruiting lipophilic substrate/inhibitor from membrane stores to the active site via the lid, resulting in enhanced hMGL catalytic activity and substrate affinity.
膜相关丝氨酸水解酶,单酰甘油脂肪酶(MGL),是一种公认的治疗靶点,调节内源性大麻素信号。晶体学研究虽然提供了关于静态 MGL 状态的结构信息,但没有直接的实验洞察力来了解 MGL 的膜结合对其结构-功能景观的影响。我们报告了将磷脂双层纳米盘作为生物膜模型的应用,以评估膜系统对人 MGL(hMGL)的催化特性和构象动力学的影响。阴离子和中性电荷磷脂双层纳米盘增强了 hMGL 的动力学特性[表观最大速度(Vmax)和底物亲和力(Km)]。氢交换质谱(HX MS)被用作构象分析方法,以实验方式分析 hMGL-纳米盘相互作用的程度及其对 hMGL 结构的影响。我们提供的证据表明,hMGL 盖域螺旋 α4 和相邻螺旋 α6 的重要区域与纳米盘磷脂双层相互作用,将 hMGL 锚定在更开放的构象中,以促进配体进入酶的底物结合通道。不可逆氨基甲酸酯抑制剂 AM6580 对膜相关 hMGL 的共价修饰屏蔽了活性位点区域,但没有增加盖域的溶剂暴露,这表明失活的、氨基甲酰化的酶仍然完整并与膜结合。分子动力学模拟生成的构象模型与活性和抑制的、共价修饰的 hMGL 的开放、膜相关拓扑结构一致。我们的数据表明,hMGL 与磷脂双层膜的相互作用诱导酶构象的区域变化,有利于其通过盖从膜库中募集亲脂性底物/抑制剂到活性位点,从而增强 hMGL 的催化活性和底物亲和力。