Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA.
Environ Toxicol Chem. 2013 Jul;32(7):1488-94. doi: 10.1002/etc.2230. Epub 2013 May 20.
The widespread use of silver nanoparticles (AgNPs) raises the potential for environmental releases that could impact microbial ecosystem services. In the present study, the authors address how the AgNPs and Ag(+) that they release may impact nitrogen-cycling bacteria. The authors studied the cellular and transcriptional response of the denitrifier Pseudomonas stutzeri, the nitrogen fixer Azotobacter vinelandii, and the nitrifier Nitrosomonas europaea exposed to 35 nm (carbon-coated) AgNPs or to Ag(+) (added as AgNO3 ). Based on minimum inhibitory concentrations (MICs), Ag(+) was 20 times to 48 times more toxic to the tested strains than AgNPs (including Ag(+) released during exposure). Exposure to sublethal concentrations of AgNPs or Ag(+) (representing 10% of the respective MIC for AgNO3 ) resulted in no significant effect on the expression of the denitrifying genes narG, napB, nirH, and norB in P. stutzeri or the nitrogen-fixing genes nifD, nifH, vnfD, and anfD in A. vinelandii, whereas nitrifying genes (amoA1 and amoC2) in N. europaea were upregulated (2.1- to 3.3-fold). This stimulatory effect disappeared at higher silver concentrations (60% of the Ag(+) MIC), and toxicity was exerted at concentrations higher than 60% of the Ag(+) MIC. The MIC for N. europaea was 8 times to 24 times lower than for the other strains, indicating higher susceptibility to AgNPs. This was corroborated by the lower half-lethal concentration for N. europaea (87 µg/L) compared with P. stutzeri (124 µg/L) and A. vinelandii (>250 µg/L) when cells were exposed with Ag(+) for 24 h in 1 mM bicarbonate buffer. This suggests that ammonia oxidation would be the most vulnerable nitrogen-cycling process in wastewater treatment plants receiving AgNPs and in agricultural soils amended with biosolids that concentrate them.
纳米银(AgNPs)的广泛应用增加了其向环境中释放的可能性,从而可能对微生物生态系统服务产生影响。在本研究中,作者探讨了 AgNPs 及其释放的 Ag(+) 可能如何影响氮循环细菌。作者研究了经 35nm(碳涂层)AgNPs 或 Ag(+)(以 AgNO3 的形式添加)处理后脱氮菌 Pseudomonas stutzeri、固氮菌 Azotobacter vinelandii 和硝化菌 Nitrosomonas europaea 的细胞和转录反应。基于最小抑菌浓度(MIC),Ag(+) 对测试菌株的毒性比 AgNPs(包括暴露期间释放的 Ag(+))高 20 至 48 倍。在亚致死浓度下暴露于 AgNPs 或 Ag(+)(代表 AgNO3 的 MIC 的 10%)对 P. stutzeri 的脱氮基因 narG、napB、nirH 和 norB 或 A. vinelandii 的固氮基因 nifD、nifH、vnfD 和 anfD 的表达没有显著影响,而 N. europaea 的硝化基因(amoA1 和 amoC2)则被上调(2.1-3.3 倍)。在更高的银浓度(MIC 的 60%)下,这种刺激作用消失,而毒性则在高于 MIC 的 60%的浓度下显现。N. europaea 的 MIC 比其他菌株低 8 至 24 倍,表明其对 AgNPs 的敏感性更高。这与 N. europaea 的半致死浓度(87μg/L)比 P. stutzeri(124μg/L)和 A. vinelandii(>250μg/L)低 8 倍至 24 倍的情况相符,当细胞在 1mM 碳酸氢盐缓冲液中暴露于 Ag(+) 24 小时时,这表明在接收 AgNPs 的废水处理厂和富含浓缩 AgNPs 的生物固体的农业土壤中,氨氧化将是最脆弱的氮循环过程。