Suppr超能文献

2013 年生物材料学会会议和博览会博士组杰出研究奖获得者,2013 年 4 月 10 日-13 日,马萨诸塞州波士顿:模块化蛋白/陶瓷微珠中脂肪来源和骨髓来源间充质干细胞的成骨分化。

Winner for outstanding research in the Ph.D. category for the 2013 Society for Biomaterials meeting and exposition, April 10-13, 2013, Boston, Massachusetts: Osteogenic differentiation of adipose-derived and marrow-derived mesenchymal stem cells in modular protein/ceramic microbeads.

机构信息

Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.

出版信息

J Biomed Mater Res A. 2013 Jun;101(6):1531-8. doi: 10.1002/jbm.a.34611. Epub 2013 Mar 30.

Abstract

Modular tissue engineering applies biomaterials-based approaches to create discrete cell-seeded microenvironments, which can be further assembled into larger constructs for the repair of injured tissues. In the current study, we embedded human bone marrow-derived mesenchymal stem cells (MSC) and human adipose-derived stem cells (ASC) in collagen/fibrin (COL/FIB) and collagen/fibrin/hydroxyapatite (COL/FIB/HA) microbeads, and evaluated their suitability for bone tissue engineering applications. Microbeads were fabricated using a water-in-oil emulsification process, resulting in an average microbead diameter of approximately 130 ± 25 μm. Microbeads supported both cell viability and cell spreading of MSC and ASC over 7 days in culture. The embedded cells also began to remodel and compact the microbead matrix as demonstrated by confocal reflectance microscopy imaging. After two weeks of culture in media containing osteogenic supplements, both MSC and ASC deposited calcium mineral in COL/FIB microbeads, but not in COL/FIB/HA microbeads. There were no significant differences between MSC and ASC in any of the assays examined, suggesting that either cell type may be an appropriate cell source for orthopedic applications. This study has implications in the creation of defined microenvironments for bone repair, and in developing a modular approach for delivery of pre-differentiated cells.

摘要

模块化组织工程采用基于生物材料的方法来构建离散的细胞接种微环境,然后可以进一步将其组装成更大的构建体,用于修复受损组织。在本研究中,我们将人骨髓间充质干细胞(MSC)和人脂肪来源干细胞(ASC)嵌入胶原/纤维蛋白(COL/FIB)和胶原/纤维蛋白/羟基磷灰石(COL/FIB/HA)微珠中,并评估它们在骨组织工程应用中的适用性。使用油包水乳化工艺制备微珠,导致微珠的平均直径约为 130±25μm。微珠在培养的 7 天内支持 MSC 和 ASC 的细胞活力和细胞扩展。共聚焦反射显微镜成像显示,嵌入的细胞还开始重塑和压缩微珠基质。在含有成骨补充剂的培养基中培养两周后,MSC 和 ASC 均在 COL/FIB 微珠中沉积钙矿物质,但在 COL/FIB/HA 微珠中则没有。在所有检查的实验中,MSC 和 ASC 之间没有显着差异,这表明这两种细胞类型都可能是骨科应用的合适细胞来源。这项研究对创建用于骨修复的明确微环境以及开发用于输送预分化细胞的模块化方法具有重要意义。

相似文献

2
Delivery of mesenchymal stem cells in chitosan/collagen microbeads for orthopedic tissue repair.
Cells Tissues Organs. 2013;197(5):333-43. doi: 10.1159/000348359. Epub 2013 Apr 3.
4
Collagen Type II enhances chondrogenic differentiation in agarose-based modular microtissues.
Cytotherapy. 2016 Feb;18(2):263-77. doi: 10.1016/j.jcyt.2015.10.015.
6
Endothelial sprouting and network formation in collagen- and fibrin-based modular microbeads.
Acta Biomater. 2016 Jan;29:33-41. doi: 10.1016/j.actbio.2015.10.022. Epub 2015 Oct 23.
7
Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering.
Acta Biomater. 2019 Sep 1;95:348-356. doi: 10.1016/j.actbio.2019.02.046. Epub 2019 Mar 1.
10

引用本文的文献

2
Dual-phase osteogenic and vasculogenic engineered tissue for bone formation.
Tissue Eng Part A. 2015 Feb;21(3-4):530-40. doi: 10.1089/ten.TEA.2013.0740. Epub 2014 Oct 17.
3
Vasculogenesis and Angiogenesis in Modular Collagen-Fibrin Microtissues.
Biomater Sci. 2014 Oct 1;2(10):1497-1508. doi: 10.1039/C4BM00141A.
5
Strategies for directing the structure and function of three-dimensional collagen biomaterials across length scales.
Acta Biomater. 2014 Apr;10(4):1488-501. doi: 10.1016/j.actbio.2013.08.038. Epub 2013 Sep 6.
6
Cell-based approaches to the engineering of vascularized bone tissue.
Cytotherapy. 2013 Nov;15(11):1309-22. doi: 10.1016/j.jcyt.2013.06.005. Epub 2013 Aug 31.

本文引用的文献

1
Delivery of mesenchymal stem cells in chitosan/collagen microbeads for orthopedic tissue repair.
Cells Tissues Organs. 2013;197(5):333-43. doi: 10.1159/000348359. Epub 2013 Apr 3.
2
Review of bioactive glass: from Hench to hybrids.
Acta Biomater. 2013 Jan;9(1):4457-86. doi: 10.1016/j.actbio.2012.08.023. Epub 2012 Aug 21.
3
Guided bone regeneration in long-bone defects with a structural hydroxyapatite graft and collagen membrane.
Tissue Eng Part A. 2013 Sep;19(17-18):1879-88. doi: 10.1089/ten.TEA.2012.0057. Epub 2012 Sep 14.
4
Efficient engineering of vascularized ectopic bone from human embryonic stem cell-derived mesenchymal stem cells.
Tissue Eng Part A. 2012 Nov;18(21-22):2290-302. doi: 10.1089/ten.TEA.2011.0371. Epub 2012 Aug 2.
6
Human adipose stem cells: current clinical applications.
Plast Reconstr Surg. 2012 Jun;129(6):1277-1290. doi: 10.1097/PRS.0b013e31824ecae6.
7
Human embryonic stem cell encapsulation in alginate microbeads in macroporous calcium phosphate cement for bone tissue engineering.
Acta Biomater. 2012 Sep;8(9):3436-45. doi: 10.1016/j.actbio.2012.05.016. Epub 2012 May 22.
9
Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells.
Stem Cells Dev. 2012 Sep 20;21(14):2724-52. doi: 10.1089/scd.2011.0722. Epub 2012 May 9.
10
The enhancement of osteogenesis through the use of dental pulp pluripotent stem cells in 3D.
Bone. 2012 Apr;50(4):930-41. doi: 10.1016/j.bone.2012.01.005. Epub 2012 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验