Suppr超能文献

网络演化中的顶点活动爆发和传染病。

Bursts of vertex activation and epidemics in evolving networks.

机构信息

Department of Mathematical Engineering, Université catholique de Louvain, Louvain-la-Neuve, Belgium.

出版信息

PLoS Comput Biol. 2013;9(3):e1002974. doi: 10.1371/journal.pcbi.1002974. Epub 2013 Mar 21.

Abstract

The dynamic nature of contact patterns creates diverse temporal structures. In particular, empirical studies have shown that contact patterns follow heterogeneous inter-event time intervals, meaning that periods of high activity are followed by long periods of inactivity. To investigate the impact of these heterogeneities in the spread of infection from a theoretical perspective, we propose a stochastic model to generate temporal networks where vertices make instantaneous contacts following heterogeneous inter-event intervals, and may leave and enter the system. We study how these properties affect the prevalence of an infection and estimate R(0), the number of secondary infections of an infectious individual in a completely susceptible population, by modeling simulated infections (SI and SIR) that co-evolve with the network structure. We find that heterogeneous contact patterns cause earlier and larger epidemics in the SIR model in comparison to homogeneous scenarios for a vast range of parameter values, while smaller epidemics may happen in some combinations of parameters. In the case of SI and heterogeneous patterns, the epidemics develop faster in the earlier stages followed by a slowdown in the asymptotic limit. For increasing vertex turnover rates, heterogeneous patterns generally cause higher prevalence in comparison to homogeneous scenarios with the same average inter-event interval. We find that [Formula: see text] is generally higher for heterogeneous patterns, except for sufficiently large infection duration and transmission probability.

摘要

接触模式的动态性质产生了多样化的时间结构。特别是,实证研究表明,接触模式遵循异质的事件间时间间隔,这意味着高活动期之后是长时间的不活动期。为了从理论角度研究这些异质性对感染传播的影响,我们提出了一个随机模型来生成时间网络,其中顶点按照异质的事件间间隔进行瞬时接触,并且可能离开和进入系统。我们研究了这些特性如何影响感染的流行程度,并通过模拟感染(SI 和 SIR)与网络结构共同演化来估计 R(0),即完全易感人群中一个感染个体的二次感染数量。我们发现,与同质情景相比,在广泛的参数值范围内,异质接触模式会导致 SIR 模型中的疫情更早和更大,而在某些参数组合中可能会发生较小的疫情。对于 SI 和异质模式,疫情在早期阶段发展更快,随后在渐近极限处放缓。随着顶点周转率的增加,异质模式通常会导致比具有相同平均事件间间隔的同质情景更高的流行率。我们发现,除了感染持续时间和传播概率足够大的情况外,[Formula: see text]对于异质模式通常更高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/897e/3605099/5ea555cd03f6/pcbi.1002974.g001.jpg

相似文献

1
Bursts of vertex activation and epidemics in evolving networks.
PLoS Comput Biol. 2013;9(3):e1002974. doi: 10.1371/journal.pcbi.1002974. Epub 2013 Mar 21.
2
Dynamics of stochastic epidemics on heterogeneous networks.
J Math Biol. 2014 Jun;68(7):1583-605. doi: 10.1007/s00285-013-0679-1. Epub 2013 Apr 30.
3
The large graph limit of a stochastic epidemic model on a dynamic multilayer network.
J Biol Dyn. 2018 Dec;12(1):746-788. doi: 10.1080/17513758.2018.1515993.
4
A Network Epidemic Model with Preventive Rewiring: Comparative Analysis of the Initial Phase.
Bull Math Biol. 2016 Dec;78(12):2427-2454. doi: 10.1007/s11538-016-0227-4. Epub 2016 Oct 31.
5
Modeling epidemics: A primer and Numerus Model Builder implementation.
Epidemics. 2018 Dec;25:9-19. doi: 10.1016/j.epidem.2018.06.001. Epub 2018 Jul 13.
6
SIR epidemics and vaccination on random graphs with clustering.
J Math Biol. 2019 Jun;78(7):2369-2398. doi: 10.1007/s00285-019-01347-2. Epub 2019 Apr 10.
7
Stochastic SIR epidemics in a population with households and schools.
J Math Biol. 2016 Apr;72(5):1177-93. doi: 10.1007/s00285-015-0901-4. Epub 2015 Jun 13.
8
Reconstructing contact network structure and cross-immunity patterns from multiple infection histories.
PLoS Comput Biol. 2021 Sep 15;17(9):e1009375. doi: 10.1371/journal.pcbi.1009375. eCollection 2021 Sep.
9
Mean-field models for non-Markovian epidemics on networks.
J Math Biol. 2018 Feb;76(3):755-778. doi: 10.1007/s00285-017-1155-0. Epub 2017 Jul 6.

引用本文的文献

1
Structural inequalities exacerbate infection disparities.
Sci Rep. 2025 Mar 17;15(1):9082. doi: 10.1038/s41598-025-91008-w.
2
Bursts of communication increase opinion diversity in the temporal Deffuant model.
Sci Rep. 2024 Jan 26;14(1):2222. doi: 10.1038/s41598-024-52458-w.
3
Routing Strategies for Isochronal-Evolution Random Matching Network.
Entropy (Basel). 2023 Feb 16;25(2):363. doi: 10.3390/e25020363.
4
5
Social fluidity mobilizes contagion in human and animal populations.
Elife. 2021 Jul 30;10:e62177. doi: 10.7554/eLife.62177.
6
Impact of temporal correlations on high risk outbreaks of independent and cooperative SIR dynamics.
PLoS One. 2021 Jul 20;16(7):e0253563. doi: 10.1371/journal.pone.0253563. eCollection 2021.
7
Information diffusion backbones in temporal networks.
Sci Rep. 2019 May 1;9(1):6798. doi: 10.1038/s41598-019-43029-5.
8
Correlated bursts in temporal networks slow down spreading.
Sci Rep. 2018 Oct 17;8(1):15321. doi: 10.1038/s41598-018-33700-8.
9
Epidemic Threshold in Continuous-Time Evolving Networks.
Phys Rev Lett. 2018 Feb 9;120(6):068302. doi: 10.1103/PhysRevLett.120.068302.
10
Automated monitoring of behavior reveals bursty interaction patterns and rapid spreading dynamics in honeybee social networks.
Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):1433-1438. doi: 10.1073/pnas.1713568115. Epub 2018 Jan 29.

本文引用的文献

1
The dynamic nature of contact networks in infectious disease epidemiology.
J Biol Dyn. 2010 Sep;4(5):478-89. doi: 10.1080/17513758.2010.503376.
2
Exploiting temporal network structures of human interaction to effectively immunize populations.
PLoS One. 2012;7(5):e36439. doi: 10.1371/journal.pone.0036439. Epub 2012 May 7.
3
Determinants of sexual network structure and their impact on cumulative network measures.
PLoS Comput Biol. 2012;8(4):e1002470. doi: 10.1371/journal.pcbi.1002470. Epub 2012 Apr 26.
4
Effects of school closure on incidence of pandemic influenza in Alberta, Canada.
Ann Intern Med. 2012 Feb 7;156(3):173-81. doi: 10.7326/0003-4819-156-3-201202070-00005.
6
Dynamical strength of social ties in information spreading.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 2):045102. doi: 10.1103/PhysRevE.83.045102. Epub 2011 Apr 27.
7
Spreading dynamics following bursty human activity patterns.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Mar;83(3 Pt 2):036102. doi: 10.1103/PhysRevE.83.036102. Epub 2011 Mar 7.
8
Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts.
PLoS Comput Biol. 2011 Mar;7(3):e1001109. doi: 10.1371/journal.pcbi.1001109. Epub 2011 Mar 17.
9
Small but slow world: how network topology and burstiness slow down spreading.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Feb;83(2 Pt 2):025102. doi: 10.1103/PhysRevE.83.025102. Epub 2011 Feb 18.
10
A high-resolution human contact network for infectious disease transmission.
Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22020-5. doi: 10.1073/pnas.1009094108. Epub 2010 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验