Suppr超能文献

抛物面反射聚焦的平面波和轴对称波的瞬态轴向解。

Transient axial solution for plane and axisymmetric waves focused by a paraboloidal reflector.

机构信息

Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712-1068, USA.

出版信息

J Acoust Soc Am. 2013 Apr;133(4):2025-35. doi: 10.1121/1.4794367.

Abstract

A time domain analytical solution is presented to calculate the pressure response along the axis of a paraboloidal reflector for a normally incident plane wave. This work is inspired by Hamilton's axial solution for an ellipsoidal mirror and the same methodology is employed in this paper. Behavior of the reflected waves along reflector axis is studied, and special interest is placed on focusing gain obtained at the focal point. This analytical solution indicates that the focusing gain is affected by reflector geometry and the time derivative of the input signal. In addition, focused pressure response in the focal zone given by various reflector geometries and input frequencies are also investigated. This information is useful for selecting appropriate reflector geometry in a specific working environment to achieve the best signal enhancement. Numerical simulation employing the finite element method is used to validate the analytical solution, and visualize the wave field to provide a better understanding of the propagation of reflected waves. This analytical solution can be modified to apply to non-planar incident waves with axisymmetric wavefront and non-uniform pressure distribution. An example of incident waves with conical-shaped wavefront is presented.

摘要

本文提出了一种用于计算抛物面反射器轴线上平面波的压力响应的时域解析解。这项工作的灵感来源于 Hamilton 对椭球面镜的轴向解,本文采用了相同的方法。研究了反射波沿反射器轴的行为,并特别关注在焦点处获得的聚焦增益。该解析解表明,聚焦增益受到反射器几何形状和输入信号的时间导数的影响。此外,还研究了不同反射器几何形状和输入频率在焦点区域产生的聚焦压力响应。这些信息对于在特定工作环境中选择合适的反射器几何形状以获得最佳信号增强非常有用。采用有限元法的数值模拟用于验证解析解,并可视化波场,以更好地理解反射波的传播。可以对该解析解进行修改以应用于具有轴对称波前和非均匀压力分布的非平面入射波。给出了具有锥形波前的入射波的示例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验