University of Southern Denmark, Mærsk Mc-Kinney Mo̸ller Institute, Campusvej 55, 5230 Odense M, Denmark.
J Acoust Soc Am. 2013 Nov;134(5):3409-18. doi: 10.1121/1.4823840.
The formulation presented in this paper is based on the boundary element method (BEM) and implements Kirchhoff's decomposition into viscous, thermal, and acoustic components, which can be treated independently everywhere in the domain except on the boundaries. The acoustic variables with losses are solved using extended boundary conditions that assume (i) negligible temperature fluctuations at the boundary and (ii) normal and tangential matching of the boundary's particle velocity. The proposed model does not require constructing a special mesh for the viscous and thermal boundary layers as is the case with the existing finite element method (FEM) implementations with losses. The suitability of this approach is demonstrated using an axisymmetrical BEM and two test cases where the numerical results are compared with analytical solutions.
本文提出的公式基于边界元法(BEM),并实现了 Kirchhoff 的粘性、热和声学分量的分解,除边界外,在域内的任何地方都可以独立处理。使用扩展边界条件来求解具有损耗的声学变量,这些边界条件假设(i)边界处的温度波动可以忽略不计,以及(ii)边界处的质点速度的法向和切向匹配。与具有损耗的现有有限元方法(FEM)实现不同,所提出的模型不需要为粘性和热边界层构建特殊网格。通过轴对称边界元法和两个测试案例来证明这种方法的适用性,其中将数值结果与解析解进行了比较。