Liu Jun, Zhu Jie, Tian Miao, Gu Xiaokun, Schmidt Aaron, Yang Ronggui
Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA.
Rev Sci Instrum. 2013 Mar;84(3):034902. doi: 10.1063/1.4797479.
The increasing interest in the extraordinary thermal properties of nanostructures has led to the development of various measurement techniques. Transient thermoreflectance method has emerged as a reliable measurement technique for thermal conductivity of thin films. In this method, the determination of thermal conductivity usually relies much on the accuracy of heat capacity input. For new nanoscale materials with unknown or less-understood thermal properties, it is either questionable to assume bulk heat capacity for nanostructures or difficult to obtain the bulk form of those materials for a conventional heat capacity measurement. In this paper, we describe a technique for simultaneous measurement of thermal conductivity κ and volumetric heat capacity C of both bulk and thin film materials using frequency-dependent time-domain thermoreflectance (TDTR) signals. The heat transfer model is analyzed first to find how different combinations of κ and C determine the frequency-dependent TDTR signals. Simultaneous measurement of thermal conductivity and volumetric heat capacity is then demonstrated with bulk Si and thin film SiO2 samples using frequency-dependent TDTR measurement. This method is further testified by measuring both thermal conductivity and volumetric heat capacity of novel hybrid organic-inorganic thin films fabricated using the atomic∕molecular layer deposition. Simultaneous measurement of thermal conductivity and heat capacity can significantly shorten the development∕discovery cycle of novel materials.
对纳米结构非凡热性能的兴趣日益浓厚,促使各种测量技术得以发展。瞬态热反射法已成为一种可靠的薄膜热导率测量技术。在这种方法中,热导率的测定通常很大程度上依赖于热容量输入的准确性。对于热性能未知或了解较少的新型纳米材料,要么假设纳米结构的体热容量存在疑问,要么难以获得这些材料的体相形式以进行传统的热容量测量。在本文中,我们描述了一种使用频率相关的时域热反射(TDTR)信号同时测量体材料和薄膜材料的热导率κ和体积热容量C的技术。首先分析传热模型,以找出κ和C的不同组合如何决定频率相关的TDTR信号。然后使用频率相关的TDTR测量对体硅和二氧化硅薄膜样品进行热导率和体积热容量的同时测量。通过测量使用原子/分子层沉积制备的新型有机-无机混合薄膜的热导率和体积热容量,进一步验证了该方法。热导率和热容量的同时测量可以显著缩短新型材料的研发/发现周期。