Rodin David, Yee Shannon K
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
Rev Sci Instrum. 2017 Jan;88(1):014902. doi: 10.1063/1.4973297.
Transient thermoreflectance (TTR) techniques are ubiquitous methods for measuring thermal conductivity of bulk materials and thin-films. Both through-plane thermal conductivity k and in-plane thermal conductivity k should be independently measured in transversely anisotropic materials. When these properties are measured using conventional TTR techniques, the accuracy of the k measurement is dependent on the accuracy of measuring k and vice versa. This is especially problematic for thin-films measurements as uncertainty in k (∼5%) can propagate and grow for uncertainty in k. In this paper, we present a method for the simultaneous measurement of k and k using beam-offset frequency domain thermoreflectance (FDTR) with robust uncertainty estimation. The conventional diffusive heat transfer solution is analyzed to show that offset and heating frequency can independently control the sensitivity to directional thermal conductivity and extract values for k and k. Numerical uncertainty analyses demonstrate that sweeping both heating frequency and beam offset results in a reduction of measurement uncertainty. This modified measurement technique is demonstrated on crystalline alumina (c-AlO), amorphous alumina (a-AlO), quartz, fused silica, and highly oriented pyrolytic graphite.
瞬态热反射(TTR)技术是测量块状材料和薄膜热导率的常用方法。在横向各向异性材料中,应分别独立测量垂直于平面的热导率k和平行于平面的热导率k。当使用传统的TTR技术测量这些特性时,k测量的准确性取决于k测量的准确性,反之亦然。对于薄膜测量而言,这一问题尤为突出,因为k的不确定性(约5%)可能会因k的不确定性而传播并增大。在本文中,我们提出了一种使用光束偏移频域热反射(FDTR)同时测量k和k的方法,并进行了可靠的不确定性估计。通过对传统的扩散传热解进行分析表明,偏移量和加热频率可以独立控制对方向热导率的灵敏度,并提取k和k的值。数值不确定性分析表明,同时扫描加热频率和光束偏移量可降低测量不确定性。这种改进的测量技术已在结晶氧化铝(c-AlO)、非晶氧化铝(a-AlO)、石英、熔融石英和高度取向热解石墨上得到验证。