Institut für Toxikologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
J Med Microbiol. 2013 Sep;62(Pt 9):1414-1422. doi: 10.1099/jmm.0.057828-0. Epub 2013 Apr 4.
The combined repetitive oligopeptides (CROPs) of Clostridium difficile toxins A (TcdA) and B (TcdB) induce clathrin-mediated endocytosis of the toxins. Inconsistently, CROP-truncated TcdA(1-1874) is also capable of entering host cells and displaying full cytotoxic properties although with less potency. Pre-incubation of cells with isolated CROPs, however, reconstitutes the reduced uptake of TcdA(1-1874) to the level of the full-length toxin. We believe that TcdA exhibits an additional binding motif beyond the C-terminally located CROP domain, which might interact with cellular receptor structures that are associated with alternative internalization pathways. This study therefore evaluated endocytosis routes of CROP-dependent cellular uptake for TcdA and CROP-independent cellular uptake for TcdA(1-1874). Clathrin knockdown or inhibition with chlorpromazine affected subsequent internalization of TcdA and TcdA(1-1874), although only to some extent, arguing for alternative, clathrin-independent endocytosis routes. Inhibition of dynamin, a GTPase essentially involved in clathrin-mediated endocytosis as well as in various clathrin-independent uptake mechanisms, affected uptake of TcdA to the same extent as clathrin inhibition. In contrast, uptake of TcdA(1-1874) was almost completely eliminated in dynamin-inhibited cells. Thus, clathrin-independent uptake of TcdA(1-1874) presumably depends on dynamin. These findings demonstrate that the toxins are endocytosed via complex pathways involving clathrin and dynamin, putatively enabling them to adapt to mechanisms of various cell types. With regard to the emergence of C. difficile strains producing C-terminally truncated toxins, this study emphasizes the relevance of elucidating toxin uptake as a prerequisite for the development of toxin intervention strategies.
艰难梭菌毒素 A(TcdA)和 B(TcdB)的组合重复寡肽(CROPs)诱导毒素的网格蛋白介导的内吞作用。不一致的是,截短的 CROP-TcdA(1-1874)也能够进入宿主细胞并显示出完整的细胞毒性特性,尽管效力较低。然而,细胞与分离的 CROPs 预孵育可将 TcdA(1-1874)的摄取量恢复至全长毒素的水平。我们认为 TcdA 除了位于 C 末端的 CROP 结构域外,还具有另外的结合基序,该基序可能与与替代内化途径相关的细胞受体结构相互作用。因此,本研究评估了 CROP 依赖性细胞摄取 TcdA 的内化途径和 CROP 非依赖性细胞摄取 TcdA(1-1874)的内化途径。网格蛋白敲低或氯丙嗪抑制会影响 TcdA 和 TcdA(1-1874)的后续内化,但只是在一定程度上,这表明存在替代的、网格蛋白非依赖性的内吞作用途径。一种 GTPase 即动力蛋白的抑制,该酶在网格蛋白介导的内吞作用以及各种网格蛋白非依赖性摄取机制中都起着重要作用,对 TcdA 的摄取影响与网格蛋白抑制相同。相比之下,在动力蛋白抑制的细胞中,TcdA(1-1874)的摄取几乎完全消除。因此,TcdA(1-1874)的网格蛋白非依赖性摄取可能依赖于动力蛋白。这些发现表明,毒素通过涉及网格蛋白和动力蛋白的复杂途径被内吞,这可能使它们能够适应各种细胞类型的机制。鉴于产生 C 末端截断毒素的艰难梭菌菌株的出现,本研究强调了阐明毒素摄取作为开发毒素干预策略的前提的重要性。