Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, Netherlands.
Science. 2013 Apr 5;340(6128):85-7. doi: 10.1126/science.1233957.
Perchlorate and chlorate anions [(per)chlorate] exist in the environment from natural and anthropogenic sources, where they can serve as electron acceptors for bacteria. We performed growth experiments combined with genomic and proteomic analyses of the hyperthermophile Archaeoglobus fulgidus that show (per)chlorate reduction also extends into the archaeal domain of life. The (per)chlorate reduction pathway in A. fulgidus relies on molybdo-enzymes that have similarity with bacterial enzymes; however, chlorite is not enzymatically split into chloride and oxygen. Evidence suggests that it is eliminated by an interplay of abiotic and biotic redox reactions involving sulfur compounds. Biological (per)chlorate reduction by ancient archaea at high temperature may have prevented accumulation of perchlorate in early terrestrial environments and consequently given rise to oxidizing conditions on Earth before the rise of oxygenic photosynthesis.
高氯酸盐和氯酸盐阴离子[(过)氯酸盐]存在于自然和人为来源的环境中,在这些环境中,它们可以作为细菌的电子受体。我们进行了生长实验,并结合高温古菌嗜热古菌(Archaeoglobus fulgidus)的基因组和蛋白质组分析,结果表明(过)氯酸盐还原也扩展到了古菌生命领域。嗜热古菌(Archaeoglobus fulgidus)中的(过)氯酸盐还原途径依赖于钼酶,这些酶与细菌酶具有相似性;然而,亚氯酸盐并没有被酶促裂解成氯和氧。有证据表明,它是通过涉及硫化合物的非生物和生物氧化还原反应的相互作用而被消除的。在高温条件下,古老的古菌通过生物作用还原(过)氯酸盐,可能防止了早期陆地环境中高氯酸盐的积累,从而在有氧光合作用出现之前,地球上就出现了氧化条件。