Suppr超能文献

微工程化肿瘤模型:物理科学肿瘤学视角下的新见解和新机遇。

Microengineered tumor models: insights & opportunities from a physical sciences-oncology perspective.

机构信息

Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.

Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA.

出版信息

Biomed Microdevices. 2013 Aug;15(4):583-593. doi: 10.1007/s10544-013-9763-y.

Abstract

Prevailing evidence has established the fundamental role of microenvironmental conditions in tumorigenesis. However, the ability to identify, interrupt, and translate the underlying cellular and molecular mechanisms into meaningful therapies remains limited, due in part to a lack of organotypic culture systems that accurately recapitulate tumor physiology. Integration of tissue engineering with microfabrication technologies has the potential to address this challenge and mimic tumor heterogeneity with pathological fidelity. Specifically, this approach allows recapitulating global changes of tissue-level phenomena, while also controlling microscale variability of various conditions including spatiotemporal presentation of soluble signals, biochemical and physical characteristics of the extracellular matrix, and cellular composition. Such platforms have continued to elucidate the role of the microenvironment in cancer pathogenesis and significantly improve drug discovery and screening, particularly for therapies that target tumor-enabling stromal components. This review discusses some of the landmark efforts in the field of micro-tumor engineering with a particular emphasis on deregulated tissue organization and mass transport phenomena in the tumor microenvironment.

摘要

现有证据已经确立了微环境条件在肿瘤发生中的基本作用。然而,由于缺乏能够准确再现肿瘤生理学的器官型培养系统,将潜在的细胞和分子机制识别、中断和转化为有意义的治疗方法的能力仍然有限。组织工程与微制造技术的结合有可能解决这一挑战,并以病理保真度模拟肿瘤异质性。具体来说,这种方法允许重现组织水平现象的全局变化,同时控制各种条件的微尺度可变性,包括可溶性信号的时空呈现、细胞外基质的生化和物理特性以及细胞组成。这些平台继续阐明微环境在癌症发病机制中的作用,并极大地改善药物发现和筛选,特别是针对靶向肿瘤支持性基质成分的治疗方法。本文讨论了微肿瘤工程领域的一些具有里程碑意义的研究成果,特别强调了肿瘤微环境中组织失调和质量传输现象。

相似文献

1
Microengineered tumor models: insights & opportunities from a physical sciences-oncology perspective.
Biomed Microdevices. 2013 Aug;15(4):583-593. doi: 10.1007/s10544-013-9763-y.
2
Engineering strategies to capture the biological and biophysical tumor microenvironment in vitro.
Adv Drug Deliv Rev. 2021 Sep;176:113852. doi: 10.1016/j.addr.2021.113852. Epub 2021 Jun 28.
3
Microengineered 3D Tumor Models for Anti-Cancer Drug Discovery in Female-Related Cancers.
Ann Biomed Eng. 2021 Aug;49(8):1943-1972. doi: 10.1007/s10439-020-02704-9. Epub 2021 Jan 5.
4
In vitro models of tumor vessels and matrix: engineering approaches to investigate transport limitations and drug delivery in cancer.
Adv Drug Deliv Rev. 2014 Apr;69-70:205-216. doi: 10.1016/j.addr.2013.11.011. Epub 2013 Dec 2.
5
Engineering strategies to mimic the glioblastoma microenvironment.
Adv Drug Deliv Rev. 2014 Dec 15;79-80:172-83. doi: 10.1016/j.addr.2014.08.012. Epub 2014 Aug 29.
6
Microengineered cancer-on-a-chip platforms to study the metastatic microenvironment.
Lab Chip. 2016 Oct 18;16(21):4063-4081. doi: 10.1039/c6lc00718j.
7
Microfabricated Organ-Specific Models of Tumor Microenvironments.
Annu Rev Biomed Eng. 2025 May;27(1):307-333. doi: 10.1146/annurev-bioeng-110222-103522.
8
Microtechnology and nanotechnology in nerve repair.
Neurol Res. 2008 Dec;30(10):1053-62. doi: 10.1179/174313208X362532.
9
Engineering microscale topographies to control the cell-substrate interface.
Biomaterials. 2012 Jul;33(21):5230-46. doi: 10.1016/j.biomaterials.2012.03.079. Epub 2012 Apr 21.
10
Bridging the Gap: From 2D Cell Culture to 3D Microengineered Extracellular Matrices.
Adv Healthc Mater. 2015 Dec 30;4(18):2780-96. doi: 10.1002/adhm.201500427. Epub 2015 Nov 23.

引用本文的文献

1
Functional biomaterials for biomimetic 3D in vitro tumor microenvironment modeling.
In Vitro Model. 2023 Jan 27;2(1-2):1-23. doi: 10.1007/s44164-023-00043-2. eCollection 2023 Apr.
2
Biomaterials for Mimicking and Modelling Tumor Microenvironment.
Adv Exp Med Biol. 2022;1379:139-170. doi: 10.1007/978-3-031-04039-9_6.
3
Microengineered perfusable 3D-bioprinted glioblastoma model for in vivo mimicry of tumor microenvironment.
Sci Adv. 2021 Aug 18;7(34). doi: 10.1126/sciadv.abi9119. Print 2021 Aug.
4
The arrival of commercial bioprinters - Towards 3D bioprinting revolution!
Int J Bioprint. 2018 Jun 17;4(2):139. doi: 10.18063/IJB.v4i2.139. eCollection 2018.
5
6
The mechanical and pharmacological regulation of glioblastoma cell migration in 3D matrices.
J Cell Physiol. 2019 Apr;234(4):3948-3960. doi: 10.1002/jcp.27209. Epub 2018 Aug 21.
7
Fibroblast-associated tumour microenvironment induces vascular structure-networked tumouroid.
Sci Rep. 2018 Feb 5;8(1):2365. doi: 10.1038/s41598-018-20886-0.
8
Cancer and the metastatic substrate.
Ecancermedicalscience. 2016 Dec 8;10:701. doi: 10.3332/ecancer.2016.701. eCollection 2016.
9
Gene Co-Expression Analysis Predicts Genetic Variants Associated with Drug Responsiveness in Lung Cancer.
AMIA Jt Summits Transl Sci Proc. 2016 Jul 20;2016:32-41. eCollection 2016.
10
Recapitulating the Tumor Ecosystem Along the Metastatic Cascade Using 3D Culture Models.
Front Oncol. 2015 Jul 29;5:170. doi: 10.3389/fonc.2015.00170. eCollection 2015.

本文引用的文献

1
Physicochemical regulation of endothelial sprouting in a 3D microfluidic angiogenesis model.
J Biomed Mater Res A. 2013 Oct;101(10):2948-56. doi: 10.1002/jbm.a.34587. Epub 2013 Apr 5.
2
Multiscale models of breast cancer progression.
Ann Biomed Eng. 2012 Nov;40(11):2488-500. doi: 10.1007/s10439-012-0655-8. Epub 2012 Sep 25.
5
Unifying metastasis--integrating intravasation, circulation and end-organ colonization.
Nat Rev Cancer. 2012 Jul;12(7):445-6. doi: 10.1038/nrc3287.
8
Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues.
Nat Mater. 2012 Sep;11(9):768-74. doi: 10.1038/nmat3357. Epub 2012 Jul 1.
9
Heterogeneity of the tumor vasculature: the need for new tumor blood vessel type-specific targets.
Clin Exp Metastasis. 2012 Oct;29(7):657-62. doi: 10.1007/s10585-012-9500-6. Epub 2012 Jun 13.
10
Independent regulation of tumor cell migration by matrix stiffness and confinement.
Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10334-9. doi: 10.1073/pnas.1118073109. Epub 2012 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验