Suppr超能文献

基于人工神经网络的高精度强度预测的调控元件定量设计。

Quantitative design of regulatory elements based on high-precision strength prediction using artificial neural network.

机构信息

Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.

出版信息

PLoS One. 2013;8(4):e60288. doi: 10.1371/journal.pone.0060288. Epub 2013 Apr 1.

Abstract

Accurate and controllable regulatory elements such as promoters and ribosome binding sites (RBSs) are indispensable tools to quantitatively regulate gene expression for rational pathway engineering. Therefore, de novo designing regulatory elements is brought back to the forefront of synthetic biology research. Here we developed a quantitative design method for regulatory elements based on strength prediction using artificial neural network (ANN). One hundred mutated Trc promoter & RBS sequences, which were finely characterized with a strength distribution from 0 to 3.559 (relative to the strength of the original sequence which was defined as 1), were used for model training and test. A precise strength prediction model, NET90_19_576, was finally constructed with high regression correlation coefficients of 0.98 for both model training and test. Sixteen artificial elements were in silico designed using this model. All of them were proved to have good consistency between the measured strength and our desired strength. The functional reliability of the designed elements was validated in two different genetic contexts. The designed parts were successfully utilized to improve the expression of BmK1 peptide toxin and fine-tune deoxy-xylulose phosphate pathway in Escherichia coli. Our results demonstrate that the methodology based on ANN model can de novo and quantitatively design regulatory elements with desired strengths, which are of great importance for synthetic biology applications.

摘要

准确且可控的调控元件,如启动子和核糖体结合位点(RBS),是定量调控基因表达以实现理性途径工程的不可或缺的工具。因此,从头设计调控元件又回到了合成生物学研究的前沿。在这里,我们开发了一种基于人工神经网络(ANN)强度预测的调控元件定量设计方法。使用 100 个突变的 Trc 启动子和 RBS 序列进行模型训练和测试,这些序列的强度分布精细,从 0 到 3.559(相对于原始序列的强度,定义为 1)。最终构建了一个精确的强度预测模型 NET90_19_576,模型训练和测试的回归相关系数均高达 0.98。使用该模型在计算机上设计了 16 个人工元件。所有元件的实测强度与我们期望的强度之间都具有很好的一致性。在两种不同的遗传背景下验证了设计元件的功能可靠性。设计的元件成功用于提高 BmK1 肽毒素的表达,并在大肠杆菌中精细调节 deoxy-xylulose phosphate 途径。我们的结果表明,基于 ANN 模型的方法可以从头设计具有所需强度的调控元件,这对合成生物学应用具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e0f/3613377/37e9329f4367/pone.0060288.g001.jpg

相似文献

1
2
Significant expression of a Chinese scorpion peptide, BmK1, in Escherichia coli through promoter engineering and gene dosage strategy.
Biotechnol Appl Biochem. 2014 Jul-Aug;61(4):466-73. doi: 10.1002/bab.1194. Epub 2014 Mar 25.
3
Promoter knock-in: a novel rational method for the fine tuning of genes.
BMC Biotechnol. 2010 Mar 24;10:26. doi: 10.1186/1472-6750-10-26.
5
Functional Genetic Elements for Controlling Gene Expression in Cupriavidus necator H16.
Appl Environ Microbiol. 2018 Sep 17;84(19). doi: 10.1128/AEM.00878-18. Print 2018 Oct 1.
7
Precise Prediction of Promoter Strength Based on a De Novo Synthetic Promoter Library Coupled with Machine Learning.
ACS Synth Biol. 2022 Jan 21;11(1):92-102. doi: 10.1021/acssynbio.1c00117. Epub 2021 Dec 19.
8
Recombinant expression of Intrepicalcin from the scorpion Vaejovis intrepidus and its effect on skeletal ryanodine receptors.
Biochim Biophys Acta Gen Subj. 2017 Apr;1861(4):936-946. doi: 10.1016/j.bbagen.2017.01.032. Epub 2017 Jan 31.

引用本文的文献

2
Towards AI-designed genomes using a variational autoencoder.
Proc Biol Sci. 2024 Dec;291(2036):20241457. doi: 10.1098/rspb.2024.1457. Epub 2024 Dec 11.
3
Transfer learning for cross-context prediction of protein expression from 5'UTR sequence.
Nucleic Acids Res. 2024 Jul 22;52(13):e58. doi: 10.1093/nar/gkae491.
4
Machine Learning and Deep Learning in Synthetic Biology: Key Architectures, Applications, and Challenges.
ACS Omega. 2024 Feb 19;9(9):9921-9945. doi: 10.1021/acsomega.3c05913. eCollection 2024 Mar 5.
5
Simulated Design-Build-Test-Learn Cycles for Consistent Comparison of Machine Learning Methods in Metabolic Engineering.
ACS Synth Biol. 2023 Sep 15;12(9):2588-2599. doi: 10.1021/acssynbio.3c00186. Epub 2023 Aug 24.
6
Insight to Gene Expression From Promoter Libraries With the Machine Learning Workflow Exp2Ipynb.
Front Bioinform. 2021 Oct 14;1:747428. doi: 10.3389/fbinf.2021.747428. eCollection 2021.
7
Metabolomics and modelling approaches for systems metabolic engineering.
Metab Eng Commun. 2022 Oct 15;15:e00209. doi: 10.1016/j.mec.2022.e00209. eCollection 2022 Dec.
8
Synthetic Biology Meets Machine Learning.
Methods Mol Biol. 2023;2553:21-39. doi: 10.1007/978-1-0716-2617-7_2.
9
ProD: A Tool for Predictive Design of Tailored Promoters in Escherichia coli.
Methods Mol Biol. 2022;2516:51-59. doi: 10.1007/978-1-0716-2413-5_4.
10
Dynamic modulation of enzyme activity by synthetic CRISPR-Cas6 endonucleases.
Nat Chem Biol. 2022 May;18(5):492-500. doi: 10.1038/s41589-022-01005-7. Epub 2022 Apr 25.

本文引用的文献

1
Tunable promoters in synthetic and systems biology.
Subcell Biochem. 2012;64:181-201. doi: 10.1007/978-94-007-5055-5_9.
3
Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology.
PLoS One. 2012;7(3):e33279. doi: 10.1371/journal.pone.0033279. Epub 2012 Mar 19.
4
Parts plus pipes: synthetic biology approaches to metabolic engineering.
Metab Eng. 2012 May;14(3):223-32. doi: 10.1016/j.ymben.2011.10.003. Epub 2011 Oct 25.
5
Integrating quantitative knowledge into a qualitative gene regulatory network.
PLoS Comput Biol. 2011 Sep;7(9):e1002157. doi: 10.1371/journal.pcbi.1002157. Epub 2011 Sep 15.
6
Improving protein secondary structure prediction using a multi-modal BP method.
Comput Biol Med. 2011 Oct;41(10):946-59. doi: 10.1016/j.compbiomed.2011.08.005. Epub 2011 Aug 30.
7
Rules extraction from neural networks applied to the prediction and recognition of prokaryotic promoters.
Genet Mol Biol. 2011 Apr;34(2):353-60. doi: 10.1590/s1415-47572011000200031. Epub 2011 Apr 1.
8
GAP promoter library for fine-tuning of gene expression in Pichia pastoris.
Appl Environ Microbiol. 2011 Jun;77(11):3600-8. doi: 10.1128/AEM.02843-10. Epub 2011 Apr 15.
10
Enhancing the protein production levels in Escherichia coli with a strong promoter.
FEBS J. 2011 Mar;278(5):729-39. doi: 10.1111/j.1742-4658.2010.07991.x. Epub 2011 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验