Suppr超能文献

用于系统代谢工程的代谢组学和建模方法。

Metabolomics and modelling approaches for systems metabolic engineering.

作者信息

Khanijou Jasmeet Kaur, Kulyk Hanna, Bergès Cécilia, Khoo Leng Wei, Ng Pnelope, Yeo Hock Chuan, Helmy Mohamed, Bellvert Floriant, Chew Wee, Selvarajoo Kumar

机构信息

Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (ASTAR), Singapore 138673, Singapore.

Toulouse Biotechnology Institute, Bio & Chemical Engineering (TBI), Université de Toulouse, CNRS 5504 - INRA 792 - INSA, France.

出版信息

Metab Eng Commun. 2022 Oct 15;15:e00209. doi: 10.1016/j.mec.2022.e00209. eCollection 2022 Dec.

Abstract

Metabolic engineering involves the manipulation of microbes to produce desirable compounds through genetic engineering or synthetic biology approaches. Metabolomics involves the quantitation of intracellular and extracellular metabolites, where mass spectrometry and nuclear magnetic resonance based analytical instrumentation are often used. Here, the experimental designs, sample preparations, metabolite quenching and extraction are essential to the quantitative metabolomics workflow. The resultant metabolomics data can then be used with computational modelling approaches, such as kinetic and constraint-based modelling, to better understand underlying mechanisms and bottlenecks in the synthesis of desired compounds, thereby accelerating research through systems metabolic engineering. Constraint-based models, such as genome scale models, have been used successfully to enhance the yield of desired compounds from engineered microbes, however, unlike kinetic or dynamic models, constraint-based models do not incorporate regulatory effects. Nevertheless, the lack of time-series metabolomic data generation has hindered the usefulness of dynamic models till today. In this review, we show that improvements in automation, dynamic real-time analysis and high throughput workflows can drive the generation of more quality data for dynamic models through time-series metabolomics data generation. Spatial metabolomics also has the potential to be used as a complementary approach to conventional metabolomics, as it provides information on the localization of metabolites. However, more effort must be undertaken to identify metabolites from spatial metabolomics data derived through imaging mass spectrometry, where machine learning approaches could prove useful. On the other hand, single-cell metabolomics has also seen rapid growth, where understanding cell-cell heterogeneity can provide more insights into efficient metabolic engineering of microbes. Moving forward, with potential improvements in automation, dynamic real-time analysis, high throughput workflows, and spatial metabolomics, more data can be produced and studied using machine learning algorithms, in conjunction with dynamic models, to generate qualitative and quantitative predictions to advance metabolic engineering efforts.

摘要

代谢工程涉及通过基因工程或合成生物学方法对微生物进行改造,以生产所需化合物。代谢组学涉及对细胞内和细胞外代谢物进行定量分析,通常使用基于质谱和核磁共振的分析仪器。在此,实验设计、样品制备、代谢物淬灭和提取对于定量代谢组学工作流程至关重要。然后,所得的代谢组学数据可与计算建模方法(如动力学和基于约束的建模)结合使用,以更好地理解所需化合物合成中的潜在机制和瓶颈,从而通过系统代谢工程加速研究。基于约束的模型(如基因组规模模型)已成功用于提高工程微生物中所需化合物的产量,然而,与动力学或动态模型不同,基于约束的模型不包含调控效应。尽管如此,直到今天,缺乏时间序列代谢组学数据的生成阻碍了动态模型的实用性。在这篇综述中,我们表明自动化、动态实时分析和高通量工作流程的改进可以通过时间序列代谢组学数据生成推动为动态模型生成更多高质量数据。空间代谢组学也有可能作为传统代谢组学的补充方法,因为它提供了代谢物定位的信息。然而,必须付出更多努力,从通过成像质谱获得的空间代谢组学数据中识别代谢物,机器学习方法在这方面可能会很有用。另一方面,单细胞代谢组学也取得了快速发展,了解细胞间异质性可以为微生物的高效代谢工程提供更多见解。展望未来,随着自动化、动态实时分析、高通量工作流程和空间代谢组学的潜在改进,可以使用机器学习算法结合动态模型生成和研究更多数据,以进行定性和定量预测,推动代谢工程工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16bb/9587336/41a8942ba012/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验