Air Quality Research Center, University of California at Davis, Davis, California 95616, USA.
J Phys Chem A. 2013 Apr 18;117(15):3198-213. doi: 10.1021/jp310860p. Epub 2013 Apr 8.
In previous studies (Dutcher et al. J. Phys. Chem. C 2011, 115, 16474-16487; 2012, 116, 1850-1864), we derived equations for the Gibbs energy, solvent and solute activities, and solute concentrations in multicomponent liquid mixtures, based upon expressions for adsorption isotherms that include arbitrary numbers of hydration layers on each solute. In this work, the long-range electrostatic interactions that dominate in dilute solutions are added to the Gibbs energy expression, thus extending the range of concentrations for which the model can be used from pure liquid solute(s) to infinite dilution in the solvent, water. An equation for the conversion of the reference state for solute activity coefficients to infinite dilution in water has been derived. A number of simplifications are identified, notably the equivalence of the sorption site parameters r and the stoichiometric coefficients of the solutes, resulting in a reduction in the number of model parameters. Solute concentrations in mixtures conform to a modified Zdanovskii-Stokes-Robinson mixing rule, and solute activity coefficients to a modified McKay-Perring relation, when the effects of the long-range (Debye-Hückel) term in the equations are taken into account. Practical applications of the equations to osmotic and activity coefficients of pure aqueous electrolyte solutions and mixtures show both satisfactory accuracy from low to high concentrations, together with a thermodynamically reasonable extrapolation (beyond the range of measurements) to extreme concentration and to the pure liquid solute(s).
在先前的研究中(Dutcher 等人,J. Phys. Chem. C,2011,115,16474-16487;2012,116,1850-1864),我们基于包含每个溶质任意数量水合层的吸附等温线表达式,推导出了多组分液相混合物中吉布斯自由能、溶剂和溶质活度以及溶质浓度的方程。在这项工作中,我们将在稀溶液中起主导作用的长程静电相互作用添加到吉布斯自由能表达式中,从而将模型可使用的浓度范围从纯液体溶质扩展到溶剂(水)的无限稀释。还推导出了将溶质活度系数参考状态转换为无限稀释在水中的方程。我们确定了许多简化,特别是吸附位参数 r 和溶质化学计量系数的等价性,从而减少了模型参数的数量。当考虑到方程中长程(德拜-休克尔)项的影响时,混合物中的溶质浓度符合改进的 Zdanovskii-Stokes-Robinson 混合规则,而溶质活度系数符合改进的 McKay-Perring 关系。当将这些方程应用于纯水溶液和混合物的渗透和活度系数时,无论是从低浓度到高浓度,都具有令人满意的准确性,并且具有合理的热力学外推(超出测量范围)到极端浓度和纯液体溶质。