Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA.
J Inorg Biochem. 2013 Jul;124:1-10. doi: 10.1016/j.jinorgbio.2013.03.008. Epub 2013 Mar 22.
Electron flow within the neuronal nitric oxide synthase reductase domain (nNOSrd) includes hydride transfer from NADPH to FAD followed by two one-electron transfer reactions from FAD to FMN. We have used stopped flow spectrometry to closely monitor these electron transfer steps for both the wild type and the ΔG810 mutant of nNOSrd using a protocol involving both global analyses of the photodiode array spectral scans and curve fittings of single wavelength kinetic traces. The charge transfer complex and interflavin electron transfer events recorded at 750nm and 600nm, respectively, show the kinetics in different time frames. All electron transfer events are slow enough at 4°C to enable measurements of rate constants even for the fast charge transfer event. To our knowledge this is the first time the rate constants for the charge transfer between NADP(+) and FADH2 have been determined for NOS. These procedures allow us to conclude that (1) binding of the second NADPH is necessary to drive the full reduction of FMN and; (2) charge transfer and the subsequent interflavin electron transfer have distinct spectral features that can be monitored separately with stopped flow spectroscopy. These studies also enable us to conclude that interflavin electron transfer reported at 600nm is not limiting in NOS catalysis.
神经元型一氧化氮合酶还原酶结构域(nNOSrd)内的电子流包括从 NADPH 向 FAD 转移氢化物,随后从 FAD 向 FMN 进行两个单电子转移反应。我们使用停流光谱法,使用涉及光电二极管阵列光谱扫描的全局分析和单个波长动力学轨迹的曲线拟合的方案,密切监测野生型和 nNOSrd 的 ΔG810 突变体的这些电子转移步骤。在 750nm 和 600nm 处记录的电荷转移复合物和黄素间电子转移事件分别显示了不同时间框架内的动力学。所有电子转移事件在 4°C 下都足够慢,即使对于快速电荷转移事件,也能够测量速率常数。据我们所知,这是首次为 NOS 确定 NADP(+)和 FADH2 之间电荷转移的速率常数。这些程序使我们能够得出以下结论:(1)结合第二个 NADPH 是驱动 FMN 完全还原所必需的;(2)电荷转移和随后的黄素间电子转移具有独特的光谱特征,可以通过停流光谱法分别监测。这些研究还使我们能够得出结论,在 600nm 处报道的黄素间电子转移在 NOS 催化中不是限速的。