Loley Christina, König Inke R, Hothorn Ludwig, Ziegler Andreas
1] Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany [2] Medizinische Klinik II, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.
Eur J Hum Genet. 2013 Dec;21(12):1442-8. doi: 10.1038/ejhg.2013.62. Epub 2013 Apr 10.
The analysis of genome-wide genetic association studies generally starts with univariate statistical tests of each single-nucleotide polymorphism. The standard approach is the Cochran-Armitage trend test or its logistic regression equivalent although this approach can lose considerable power if the underlying genetic model is not additive. An alternative is the MAX test, which is robust against the three basic modes of inheritance. Here, the asymptotic distribution of the MAX test is derived using the generalized linear model together with the Delta method and multiple contrasts. The approach is applicable to binary, quantitative, and survival traits. It may be used for unrelated individuals, family-based studies, and matched pairs. The approach provides point and interval effect estimates and allows selecting the most plausible genetic model using the minimum P-value. R code is provided. A Monte-Carlo simulation study shows that the asymptotic MAX test framework meets type I error levels well, has good power, and good model selection properties for minor allele frequencies ≥0.3. Pearson's χ(2)-test is superior for lower minor allele frequencies with low frequencies for the rare homozygous genotype. In these cases, the model selection procedure should be used with caution. The use of the MAX test is illustrated by reanalyzing findings from seven genome-wide association studies including case-control, matched pairs, and quantitative trait data.
全基因组遗传关联研究的分析通常从对每个单核苷酸多态性进行单变量统计检验开始。标准方法是 Cochr an - Armitage 趋势检验或其逻辑回归等效方法,不过,如果潜在的遗传模型不是加性的,这种方法可能会损失相当大的检验效能。另一种方法是 MAX 检验,它对三种基本遗传模式具有稳健性。在此,使用广义线性模型结合 Delta 方法和多重对比推导 MAX 检验的渐近分布。该方法适用于二元性状、定量性状和生存性状。它可用于无关个体、基于家系的研究以及匹配对。该方法提供点估计和区间效应估计,并允许使用最小 P 值选择最合理的遗传模型。文中提供了 R 代码。一项蒙特卡罗模拟研究表明,对于次要等位基因频率≥0.3 的情况,渐近 MAX 检验框架能很好地满足 I 型错误水平,具有良好的检验效能和良好的模型选择特性。对于次要等位基因频率较低且罕见纯合基因型频率也较低的情况,Pearson 卡方检验更具优势。在这些情况下,应谨慎使用模型选择程序。通过重新分析来自七项全基因组关联研究的结果(包括病例对照、匹配对和定量性状数据)来说明 MAX 检验的应用。