Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy.
PLoS One. 2013;8(4):e59744. doi: 10.1371/journal.pone.0059744. Epub 2013 Apr 5.
We present a general, robust, and efficient ray-casting-based approach to triangulating complex manifold surfaces arising in the nano-bioscience field. This feature is inserted in a more extended framework that: i) builds the molecular surface of nanometric systems according to several existing definitions, ii) can import external meshes, iii) performs accurate surface area estimation, iv) performs volume estimation, cavity detection, and conditional volume filling, and v) can color the points of a grid according to their locations with respect to the given surface. We implemented our methods in the publicly available NanoShaper software suite (www.electrostaticszone.eu). Robustness is achieved using the CGAL library and an ad hoc ray-casting technique. Our approach can deal with any manifold surface (including nonmolecular ones). Those explicitly treated here are the Connolly-Richards (SES), the Skin, and the Gaussian surfaces. Test results indicate that it is robust to rotation, scale, and atom displacement. This last aspect is evidenced by cavity detection of the highly symmetric structure of fullerene, which fails when attempted by MSMS and has problems in EDTSurf. In terms of timings, NanoShaper builds the Skin surface three times faster than the single threaded version in Lindow et al. on a 100,000 atoms protein and triangulates it at least ten times more rapidly than the Kruithof algorithm. NanoShaper was integrated with the DelPhi Poisson-Boltzmann equation solver. Its SES grid coloring outperformed the DelPhi counterpart. To test the viability of our method on large systems, we chose one of the biggest molecular structures in the Protein Data Bank, namely the 1VSZ entry, which corresponds to the human adenovirus (180,000 atoms after Hydrogen addition). We were able to triangulate the corresponding SES and Skin surfaces (6.2 and 7.0 million triangles, respectively, at a scale of 2 grids per Å) on a middle-range workstation.
我们提出了一种通用、稳健且高效的基于光线投射的方法,用于三角剖分纳米生物科学领域中出现的复杂流形曲面。该功能插入到更扩展的框架中,该框架:i)根据几种现有定义构建纳米系统的分子表面,ii)可以导入外部网格,iii)进行精确的表面积估计,iv)进行体积估计、腔检测和条件体积填充,以及 v)可以根据给定表面的位置将网格点的颜色着色。我们在公开可用的 NanoShaper 软件套件(www.electrostaticszone.eu)中实现了我们的方法。稳健性是通过 CGAL 库和专门的光线投射技术实现的。我们的方法可以处理任何流形曲面(包括非分子曲面)。这里明确处理的是 Connolly-Richards(SES)、Skin 和高斯曲面。测试结果表明,它对旋转、比例和原子位移具有鲁棒性。这最后一方面通过富勒烯的高度对称结构的腔检测得到证明,当尝试通过 MSMS 进行时,该结构会失败,并且在 EDTSurf 中存在问题。就时间而言,NanoShaper 构建 Skin 表面的速度比 Lindow 等人的单线程版本快三倍,对于 100,000 个原子的蛋白质进行三角剖分的速度至少快十倍于 Kruithof 算法。NanoShaper 与 DelPhi 泊松-玻尔兹曼方程求解器集成。其 SES 网格着色性能优于 DelPhi 对应项。为了在大型系统上测试我们方法的可行性,我们选择了蛋白质数据库中最大的分子结构之一,即 1VSZ 条目,对应于人腺病毒(加氢后有 180,000 个原子)。我们能够在中等范围的工作站上对相应的 SES 和 Skin 曲面进行三角剖分(分别为 620 万个和 700 万个三角形,比例为每个Å 2 个网格)。