Suppr超能文献

NanoShaper-VMD 接口:计算和可视化分子系统中的表面、口袋和通道。

NanoShaper-VMD interface: computing and visualizing surfaces, pockets and channels in molecular systems.

机构信息

CONCEPT Lab, Istituto Italiano di Tecnologia, Genoa, Italy.

BiKi Technologies s.r.l., Genova, Italy.

出版信息

Bioinformatics. 2019 Apr 1;35(7):1241-1243. doi: 10.1093/bioinformatics/bty761.

Abstract

SUMMARY

NanoShaper is a program specifically aiming the construction and analysis of the molecular surface of nanoscopic systems. It uses ray-casting for parallelism and it performs analytical computations whenever possible to maximize robustness and accuracy of the approach. Among the other features, NanoShaper provides volume, surface area, including that of internal cavities, for any considered molecular system. It identifies pockets via a very intuitive definition based on the concept of probe radius, intrinsic to the definition of the solvent excluded surface. We show here that, with a suitable choice of the parameters, the same approach can also permit the visualisation of molecular channels. NanoShaper has now been interfaced with the widely used molecular visualization software VMD, further enriching its already well furnished toolset.

AVAILABILITY AND IMPLEMENTATION

VMD is available at http://www.ks.uiuc.edu/Research/vmd/. NanoShaper, its documentation, tutorials and supporting programs are available at http://concept.iit.it/downloads.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

摘要

NanoShaper 是一个专门针对纳米系统分子表面构建和分析的程序。它使用光线投射实现并行化,并尽可能进行分析计算,以最大限度地提高方法的稳健性和准确性。除其他功能外,NanoShaper 还为任何考虑的分子系统提供体积和表面积,包括内部腔的表面积。它通过基于探针半径概念的非常直观的定义来识别口袋,探针半径是溶剂排除表面定义的固有概念。我们在这里表明,通过选择合适的参数,相同的方法还可以允许可视化分子通道。NanoShaper 现在已经与广泛使用的分子可视化软件 VMD 进行了接口,进一步丰富了其已经非常完善的工具集。

可用性和实现

VMD 可在 http://www.ks.uiuc.edu/Research/vmd/ 获得。NanoShaper、其文档、教程和支持程序可在 http://concept.iit.it/downloads 获得。

补充信息

补充数据可在 Bioinformatics 在线获得。

相似文献

1
NanoShaper-VMD interface: computing and visualizing surfaces, pockets and channels in molecular systems.
Bioinformatics. 2019 Apr 1;35(7):1241-1243. doi: 10.1093/bioinformatics/bty761.
2
NetworkView: 3D display and analysis of protein·RNA interaction networks.
Bioinformatics. 2012 Nov 15;28(22):3000-1. doi: 10.1093/bioinformatics/bts546. Epub 2012 Sep 14.
3
VDNA: the virtual DNA plug-in for VMD.
Bioinformatics. 2009 Dec 1;25(23):3187-8. doi: 10.1093/bioinformatics/btp566. Epub 2009 Sep 29.
4
Volarea - a bioinformatics tool to calculate the surface area and the volume of molecular systems.
Chem Biol Drug Des. 2013 Dec;82(6):743-55. doi: 10.1111/cbdd.12197. Epub 2013 Oct 25.
5
A general and robust ray-casting-based algorithm for triangulating surfaces at the nanoscale.
PLoS One. 2013;8(4):e59744. doi: 10.1371/journal.pone.0059744. Epub 2013 Apr 5.
6
Epock: rapid analysis of protein pocket dynamics.
Bioinformatics. 2015 May 1;31(9):1478-80. doi: 10.1093/bioinformatics/btu822. Epub 2014 Dec 12.
7
Bendix: intuitive helix geometry analysis and abstraction.
Bioinformatics. 2012 Aug 15;28(16):2193-4. doi: 10.1093/bioinformatics/bts357. Epub 2012 Jun 23.
8
BlendMol: advanced macromolecular visualization in Blender.
Bioinformatics. 2019 Jul 1;35(13):2323-2325. doi: 10.1093/bioinformatics/bty968.
9
GapRepairer: a server to model a structural gap and validate it using topological analysis.
Bioinformatics. 2018 Oct 1;34(19):3300-3307. doi: 10.1093/bioinformatics/bty334.
10
MEMBPLUGIN: studying membrane complexity in VMD.
Bioinformatics. 2014 May 15;30(10):1478-80. doi: 10.1093/bioinformatics/btu037. Epub 2014 Jan 21.

引用本文的文献

1
Bluues_cplx: Electrostatics at Protein-Protein and Protein-Ligand Interfaces.
Molecules. 2025 Jan 3;30(1):159. doi: 10.3390/molecules30010159.
2
Protein allosteric site identification using machine learning and per amino acid residue reported internal protein nanoenvironment descriptors.
Comput Struct Biotechnol J. 2024 Oct 23;23:3907-3919. doi: 10.1016/j.csbj.2024.10.036. eCollection 2024 Dec.
3
sesA: A Program for the Analytic Computation of Solvent-Excluded Surface Areas.
ChemistryOpen. 2024 Dec;13(12):e202400172. doi: 10.1002/open.202400172. Epub 2024 Oct 22.
4
From complex data to clear insights: visualizing molecular dynamics trajectories.
Front Bioinform. 2024 Apr 11;4:1356659. doi: 10.3389/fbinf.2024.1356659. eCollection 2024.
5
SiteFerret: Beyond Simple Pocket Identification in Proteins.
J Chem Theory Comput. 2023 Aug 8;19(15):5242-5259. doi: 10.1021/acs.jctc.2c01306. Epub 2023 Jul 20.
6
GSK-3β Allosteric Inhibition: A Dead End or a New Pharmacological Frontier?
Int J Mol Sci. 2023 Apr 19;24(8):7541. doi: 10.3390/ijms24087541.
7
Coarse-Graining ddCOSMO through an Interface between Tinker and the ddX Library.
J Phys Chem B. 2022 Nov 3;126(43):8827-8837. doi: 10.1021/acs.jpcb.2c04579. Epub 2022 Oct 20.
8
Chanalyzer: A Computational Geometry Approach for the Analysis of Protein Channel Shape and Dynamics.
Front Mol Biosci. 2022 Jul 25;9:933924. doi: 10.3389/fmolb.2022.933924. eCollection 2022.
9
Probabilistic Pocket Druggability Prediction One-Class Learning.
Front Pharmacol. 2022 Jun 29;13:870479. doi: 10.3389/fphar.2022.870479. eCollection 2022.
10
In-Silico Selection of Aptamer Targeting SARS-CoV-2 Spike Protein.
Int J Mol Sci. 2022 May 22;23(10):5810. doi: 10.3390/ijms23105810.

本文引用的文献

1
Allosteric Communication Networks in Proteins Revealed through Pocket Crosstalk Analysis.
ACS Cent Sci. 2017 Sep 27;3(9):949-960. doi: 10.1021/acscentsci.7b00211. Epub 2017 Aug 10.
2
dMM-PBSA: A New HADDOCK Scoring Function for Protein-Peptide Docking.
Front Mol Biosci. 2016 Aug 31;3:46. doi: 10.3389/fmolb.2016.00046. eCollection 2016.
3
GPU-accelerated analysis and visualization of large structures solved by molecular dynamics flexible fitting.
Faraday Discuss. 2014;169:265-83. doi: 10.1039/c4fd00005f. Epub 2014 Jun 30.
5
A general and robust ray-casting-based algorithm for triangulating surfaces at the nanoscale.
PLoS One. 2013;8(4):e59744. doi: 10.1371/journal.pone.0059744. Epub 2013 Apr 5.
8
CAVER: a new tool to explore routes from protein clefts, pockets and cavities.
BMC Bioinformatics. 2006 Jun 22;7:316. doi: 10.1186/1471-2105-7-316.
9
Molecular dynamics simulations of the complete satellite tobacco mosaic virus.
Structure. 2006 Mar;14(3):437-49. doi: 10.1016/j.str.2005.11.014.
10
The Poisson-Boltzmann equation for biomolecular electrostatics: a tool for structural biology.
J Mol Recognit. 2002 Nov-Dec;15(6):377-92. doi: 10.1002/jmr.577.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验