Department of Anesthesiology, Duke University Medical Center, Durham, NC; Brain Injury Translational Research Center, Duke University Medical Center, Durham, NC; Division of Neurology, Department of Medicine, Duke University Medical Center, Durham, NC.
Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, NC.
J Thorac Cardiovasc Surg. 2014 Mar;147(3):1002-7. doi: 10.1016/j.jtcvs.2013.03.022. Epub 2013 Apr 11.
Cooling to electrocerebral inactivity (ECI) by electroencephalography (EEG) remains the gold standard to maximize cerebral and systemic organ protection during deep hypothermic circulatory arrest (DHCA). We sought to determine predictors of ECI to help guide cooling protocols when EEG monitoring is unavailable.
Between July 2005 and July 2011, 396 patients underwent thoracic aortic operation with DHCA; EEG monitoring was used in 325 (82%) of these patients to guide the cooling strategy, and constituted the study cohort. Electroencephalographic monitoring was used for all elective cases and, when available, for nonelective cases. Multivariable linear regression was used to assess predictors of the nasopharyngeal temperature and cooling time required to achieve ECI.
Cooling to a nasopharyngeal temperature of 12.7°C or for a duration of 97 minutes was required to achieve ECI in >95% of patients. Only 7% and 11% of patients achieved ECI by 18°C or 50 minutes of cooling, respectively. No independent predictors of nasopharyngeal temperature at ECI were identified. Independent predictors of cooling time included body surface area (18 minutes/m(2)), white race (7 minutes), and starting nasopharyngeal temperature (3 minutes/°C). Low complication rates were observed (ischemic stroke, 1.5%; permanent paraparesis/paraplegia, 1.5%; new-onset dialysis, 2.2%; and 30-day/in-hospital mortality, 4.3%).
Cooling to a nasopharyngeal temperature of 12.7°C or for a duration of 97 minutes achieved ECI in >95% of patients in our study population. However, patient-specific factors were poorly predictive of the temperature or cooling time required to achieve ECI, necessitating EEG monitoring for precise ECI detection.
通过脑电图(EEG)使电脑活动停止(ECI)降温仍然是深低温停循环(DHCA)期间最大限度保护脑和全身器官的金标准。我们试图确定 ECI 的预测因素,以帮助在无法进行脑电图监测时指导冷却方案。
2005 年 7 月至 2011 年 7 月,396 例患者接受胸主动脉手术并进行 DHCA;其中 325 例(82%)患者进行了 EEG 监测以指导冷却策略,构成了研究队列。EEG 监测用于所有择期病例,在可行的情况下也用于非择期病例。多变量线性回归用于评估达到 ECI 所需的鼻咽温度和冷却时间的预测因素。
在>95%的患者中,需要将鼻咽温度降至 12.7°C 或冷却 97 分钟才能达到 ECI。分别只有 7%和 11%的患者在冷却至 18°C 或 50 分钟时达到 ECI。没有确定达到 ECI 时鼻咽温度的独立预测因素。冷却时间的独立预测因素包括体表面积(18 分钟/m²)、白种人(7 分钟)和起始鼻咽温度(3 分钟/°C)。观察到较低的并发症发生率(缺血性中风,1.5%;永久性截瘫/四肢瘫痪,1.5%;新发透析,2.2%;30 天/住院死亡率,4.3%)。
在我们的研究人群中,>95%的患者需要将鼻咽温度降至 12.7°C 或冷却 97 分钟才能达到 ECI。然而,患者特定因素对达到 ECI 所需的温度或冷却时间的预测能力较差,需要脑电图监测以准确检测 ECI。