Istituto di Biofisica, CNR, Via De Marini, 6, 16149 Genova, Italy.
J Bioenerg Biomembr. 2013 Aug;45(4):353-68. doi: 10.1007/s10863-013-9510-3. Epub 2013 Apr 13.
Voltage dependent sodium channels are membrane proteins essential for cell excitability. They are composed by a pore-forming α-subunit, encoded in mammals by up to 9 different genes, and 4 different ancillary β-subunits. The expression pattern of the α subunit isoforms confers the distinctive functional and pharmacological properties to different excitable tissues. β subunits are important modulators of channel function and expression. Mutation C121W of the β1-subunit causes an autosomal dominant epileptic syndrome without cardiac symptoms. The C121W mutation may act by a dominant-competition, modifying the expression of α-subunit proteins. To test this hypothesis, we transfected GH3 cells, from neuro-ectoderm origin, with wild-type or mutant β1 subunits and compared them to native cells. To examine the tissue specificity of the C121W-β1 mutation, we compared the effects of the mutation on neural cells with those of H9C2 cells of cardiac origin. We found that in GH3 cells the over-expression of the β1 subunit augments the α subunit mRNA and protein levels, while in the H9C2 cells the enhanced level of β1 subunit not only increases but also qualitatively modifies the sodium channel α isoform expression pattern. Interestingly, the introduction of the epileptogenic C121W-β1 subunit does not alter the sodium channel isoform composition of GH3 cells, while produces additional changes in the α-subunit expression pattern of H9C2 cells. Electrophysiological measurements confirm these molecular results. The expression differences observed could be correlated to the tissue-specific regulatory action of the β1 subunit and to the nervous system specificity of the C121W mutation. Our findings could be helpful for the comprehension of the molecular mechanism of generalised epileptic with febrile seizures plus in patients with identified β1 subunit mutations.
电压门控钠离子通道是细胞兴奋性所必需的膜蛋白。它们由一个孔形成的α亚基组成,哺乳动物中由多达 9 个不同的基因编码,还有 4 个不同的辅助β亚基。α亚基同工型的表达模式赋予不同的可兴奋组织独特的功能和药理学特性。β亚基是通道功能和表达的重要调节剂。β1 亚基的 C121W 突变导致常染色体显性遗传性癫痫综合征而无心脏症状。C121W 突变可能通过显性竞争作用,改变α亚基蛋白的表达。为了验证这一假说,我们转染了源自神经外胚层的 GH3 细胞,用野生型或突变型β1 亚基进行转染,并将其与天然细胞进行比较。为了研究 C121W-β1 突变的组织特异性,我们比较了该突变对神经细胞的影响与源自心脏的 H9C2 细胞的影响。我们发现,在 GH3 细胞中,β1 亚基的过表达增加了α亚基的 mRNA 和蛋白水平,而在 H9C2 细胞中,增强的β1 亚基水平不仅增加,而且还改变了钠离子通道α同工型的表达模式。有趣的是,引入致癫痫的 C121W-β1 亚基不会改变 GH3 细胞的钠离子通道同工型组成,而会在 H9C2 细胞的α亚基表达模式中产生额外的变化。电生理测量结果证实了这些分子结果。观察到的表达差异可能与β1 亚基的组织特异性调节作用以及 C121W 突变的神经系统特异性有关。我们的研究结果可能有助于理解β1 亚基突变患者中伴有发热性惊厥附加全身性癫痫的分子发病机制。