Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China.
Small. 2013 Oct 25;9(20):3506-13. doi: 10.1002/smll.201300652. Epub 2013 Apr 15.
The catalytic behavior of transition metals (Sc to Zn) combined in polymeric phthalocyanine (Pc) is investigated systematically by using first-principles calculations. The results indicate that CoPc exhibits the highest catalytic activity for CO oxidation at room temperature with low energy barriers. By exploring the two well-established mechanisms for CO oxidation with O2 , namely, the Langmuir-Hinshelwood (LH) and the Eley-Rideal (ER) mechanisms, it is found that the first step of CO oxidation catalyzed by CoPc is the LH mechanism (CO + O2 → CO2 + O) with energy barrier as low as 0.65 eV. The second step proceeds via both ER and LH mechanisms (CO + O → CO2 ) with small energy barriers of 0.10 and 0.12 eV, respectively. The electronic resonance among Co-3d, CO-2π*, and O2 -2π* orbitals is responsible for the high activity of CoPc. These results have significant implications for a novel avenue to fabricate organometallic sheet nanocatalysts for CO oxidation with low cost and high activity.
通过使用第一性原理计算,系统地研究了聚合酞菁(Pc)中过渡金属(Sc 到 Zn)的催化行为。结果表明,CoPc 在室温下对 CO 氧化具有最高的催化活性,其能量势垒较低。通过探索 CO 氧化与 O2 的两种成熟机制,即 Langmuir-Hinshelwood(LH)和 Eley-Rideal(ER)机制,发现 CoPc 催化的 CO 氧化的第一步是 LH 机制(CO + O2 → CO2 + O),其能量势垒低至 0.65 eV。第二步通过 ER 和 LH 机制(CO + O → CO2)进行,其能量势垒分别为 0.10 和 0.12 eV。Co-3d、CO-2π和 O2-2π轨道之间的电子共振是 CoPc 高活性的原因。这些结果为低成本、高活性的 CO 氧化有机金属片纳米催化剂的制备提供了一条新途径。