School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
J Bacteriol. 2013 Jun;195(12):2826-38. doi: 10.1128/JB.00091-13. Epub 2013 Apr 12.
To better understand the poor conservation of the helicase binding domain of primases (DnaGs) among the eubacteria, we determined the crystal structure of the Helicobacter pylori DnaG C-terminal domain (HpDnaG-CTD) at 1.78 Å. The structure has a globular subdomain connected to a helical hairpin. Structural comparison has revealed that globular subdomains, despite the variation in number of helices, have broadly similar arrangements across the species, whereas helical hairpins show different orientations. Further, to study the helicase-primase interaction in H. pylori, a complex was modeled using the HpDnaG-CTD and HpDnaB-NTD (helicase) crystal structures using the Bacillus stearothermophilus BstDnaB-BstDnaG-CTD (helicase-primase) complex structure as a template. By using this model, a nonconserved critical residue Phe534 on helicase binding interface of DnaG-CTD was identified. Mutation guided by molecular dynamics, biophysical, and biochemical studies validated our model. We further concluded that species-specific helicase-primase interactions are influenced by electrostatic surface potentials apart from the critical hydrophobic surface residues.
为了更好地理解原核生物中引物酶(DnaGs)解旋酶结合域的保存不佳,我们测定了幽门螺杆菌 DnaG C 端结构域(HpDnaG-CTD)在 1.78 Å 下的晶体结构。该结构具有一个球形亚结构域和一个螺旋发夹。结构比较表明,尽管螺旋的数量有所不同,但球形亚结构域在不同物种中具有广泛相似的排列方式,而螺旋发夹则呈现出不同的取向。此外,为了研究幽门螺杆菌中的解旋酶-引物酶相互作用,我们使用 HpDnaG-CTD 和 HpDnaB-NTD(解旋酶)晶体结构,使用 Bacillus stearothermophilus BstDnaB-BstDnaG-CTD(解旋酶-引物酶)复合物结构作为模板,构建了复合物模型。通过使用该模型,我们确定了 DnaG-CTD 解旋酶结合界面上的一个非保守关键残基 Phe534。通过分子动力学、生物物理和生化研究指导的突变验证了我们的模型。我们进一步得出结论,除了关键的疏水面残基外,物种特异性的解旋酶-引物酶相互作用还受到静电表面电势的影响。