Suppr超能文献

幽门螺杆菌引物酶 C 端结构域的晶体结构及其解旋酶结合模式

Crystal structure and mode of helicase binding of the C-terminal domain of primase from Helicobacter pylori.

机构信息

School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.

出版信息

J Bacteriol. 2013 Jun;195(12):2826-38. doi: 10.1128/JB.00091-13. Epub 2013 Apr 12.

Abstract

To better understand the poor conservation of the helicase binding domain of primases (DnaGs) among the eubacteria, we determined the crystal structure of the Helicobacter pylori DnaG C-terminal domain (HpDnaG-CTD) at 1.78 Å. The structure has a globular subdomain connected to a helical hairpin. Structural comparison has revealed that globular subdomains, despite the variation in number of helices, have broadly similar arrangements across the species, whereas helical hairpins show different orientations. Further, to study the helicase-primase interaction in H. pylori, a complex was modeled using the HpDnaG-CTD and HpDnaB-NTD (helicase) crystal structures using the Bacillus stearothermophilus BstDnaB-BstDnaG-CTD (helicase-primase) complex structure as a template. By using this model, a nonconserved critical residue Phe534 on helicase binding interface of DnaG-CTD was identified. Mutation guided by molecular dynamics, biophysical, and biochemical studies validated our model. We further concluded that species-specific helicase-primase interactions are influenced by electrostatic surface potentials apart from the critical hydrophobic surface residues.

摘要

为了更好地理解原核生物中引物酶(DnaGs)解旋酶结合域的保存不佳,我们测定了幽门螺杆菌 DnaG C 端结构域(HpDnaG-CTD)在 1.78 Å 下的晶体结构。该结构具有一个球形亚结构域和一个螺旋发夹。结构比较表明,尽管螺旋的数量有所不同,但球形亚结构域在不同物种中具有广泛相似的排列方式,而螺旋发夹则呈现出不同的取向。此外,为了研究幽门螺杆菌中的解旋酶-引物酶相互作用,我们使用 HpDnaG-CTD 和 HpDnaB-NTD(解旋酶)晶体结构,使用 Bacillus stearothermophilus BstDnaB-BstDnaG-CTD(解旋酶-引物酶)复合物结构作为模板,构建了复合物模型。通过使用该模型,我们确定了 DnaG-CTD 解旋酶结合界面上的一个非保守关键残基 Phe534。通过分子动力学、生物物理和生化研究指导的突变验证了我们的模型。我们进一步得出结论,除了关键的疏水面残基外,物种特异性的解旋酶-引物酶相互作用还受到静电表面电势的影响。

相似文献

1
Crystal structure and mode of helicase binding of the C-terminal domain of primase from Helicobacter pylori.
J Bacteriol. 2013 Jun;195(12):2826-38. doi: 10.1128/JB.00091-13. Epub 2013 Apr 12.
2
Structural insights into the interaction of helicase and primase in .
Biochem J. 2018 Nov 15;475(21):3493-3509. doi: 10.1042/BCJ20180673.
5
DnaC, the indispensable companion of DnaB helicase, controls the accessibility of DnaB helicase by primase.
J Biol Chem. 2017 Dec 22;292(51):20871-20882. doi: 10.1074/jbc.M117.807644. Epub 2017 Oct 25.
6
Structure of the zinc-binding domain of Bacillus stearothermophilus DNA primase.
Structure. 2000 Mar 15;8(3):231-9. doi: 10.1016/s0969-2126(00)00101-5.
7
Identification of a Ligand-Binding Site on the Staphylococcus aureus DnaG Primase C-Terminal Domain.
Biochemistry. 2017 Feb 21;56(7):932-943. doi: 10.1021/acs.biochem.6b01273. Epub 2017 Feb 9.
8
Structure and primase-mediated activation of a bacterial dodecameric replicative helicase.
Nucleic Acids Res. 2015 Sep 30;43(17):8564-76. doi: 10.1093/nar/gkv792. Epub 2015 Aug 11.
9
The bacterial helicase-primase interaction: a common structural/functional module.
Structure. 2005 Jun;13(6):839-44. doi: 10.1016/j.str.2005.04.006.
10
Structure of hexameric DnaB helicase and its complex with a domain of DnaG primase.
Science. 2007 Oct 19;318(5849):459-63. doi: 10.1126/science.1147353.

引用本文的文献

1
Characterization of DnaB-DnaG Interaction in M. tuberculosis Using Small-Angle X-ray Scattering-Based Dissociation Assay.
Chembiochem. 2025 Jul 18;26(14):e202500289. doi: 10.1002/cbic.202500289. Epub 2025 Jul 1.
2
3
A structural view of bacterial DNA replication.
Protein Sci. 2019 Jun;28(6):990-1004. doi: 10.1002/pro.3615. Epub 2019 Apr 17.
4
DnaG Primase-A Target for the Development of Novel Antibacterial Agents.
Antibiotics (Basel). 2018 Aug 13;7(3):72. doi: 10.3390/antibiotics7030072.
6
DnaC, the indispensable companion of DnaB helicase, controls the accessibility of DnaB helicase by primase.
J Biol Chem. 2017 Dec 22;292(51):20871-20882. doi: 10.1074/jbc.M117.807644. Epub 2017 Oct 25.
7
Identification of a Ligand-Binding Site on the Staphylococcus aureus DnaG Primase C-Terminal Domain.
Biochemistry. 2017 Feb 21;56(7):932-943. doi: 10.1021/acs.biochem.6b01273. Epub 2017 Feb 9.
9
Variability and conservation of structural domains in divide-and-conquer approaches.
J Biomol NMR. 2016 Jun;65(2):79-86. doi: 10.1007/s10858-016-0039-8. Epub 2016 May 30.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
3
Helicobacter pylori oriC--the first bipartite origin of chromosome replication in Gram-negative bacteria.
Nucleic Acids Res. 2012 Oct;40(19):9647-60. doi: 10.1093/nar/gks742. Epub 2012 Aug 16.
4
Architecture of a dodecameric bacterial replicative helicase.
Structure. 2012 Mar 7;20(3):554-64. doi: 10.1016/j.str.2012.01.020.
5
DNA binding activity of Helicobacter pylori DnaB helicase: the role of the N-terminal domain in modulating DNA binding activities.
FEBS J. 2012 Jan;279(2):234-50. doi: 10.1111/j.1742-4658.2011.08418.x. Epub 2011 Dec 9.
6
Helicobacter pylori chromosomal DNA replication: current status and future perspectives.
FEBS Lett. 2011 Jan 3;585(1):7-17. doi: 10.1016/j.febslet.2010.11.018. Epub 2010 Nov 20.
7
Dali server: conservation mapping in 3D.
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W545-9. doi: 10.1093/nar/gkq366. Epub 2010 May 10.
8
Could Helicobacter pylori play an important role in axonal type of Guillain-Barré syndrome pathogenesis?
Clin Neurol Neurosurg. 2010 Apr;112(3):193-8. doi: 10.1016/j.clineuro.2009.11.008. Epub 2009 Dec 16.
9
The structure of a DnaA/HobA complex from Helicobacter pylori provides insight into regulation of DNA replication in bacteria.
Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21115-20. doi: 10.1073/pnas.0908966106. Epub 2009 Nov 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验