Suppr超能文献

使用归纳逻辑编程在变异数据库中进行知识发现。

Knowledge discovery in variant databases using inductive logic programming.

作者信息

Nguyen Hoan, Luu Tien-Dao, Poch Olivier, Thompson Julie D

机构信息

Laboratoire de Bioinformatique et Génomique Intégratives, Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, France.

出版信息

Bioinform Biol Insights. 2013 Mar 18;7:119-31. doi: 10.4137/BBI.S11184. Print 2013.

Abstract

Understanding the effects of genetic variation on the phenotype of an individual is a major goal of biomedical research, especially for the development of diagnostics and effective therapeutic solutions. In this work, we describe the use of a recent knowledge discovery from database (KDD) approach using inductive logic programming (ILP) to automatically extract knowledge about human monogenic diseases. We extracted background knowledge from MSV3d, a database of all human missense variants mapped to 3D protein structure. In this study, we identified 8,117 mutations in 805 proteins with known three-dimensional structures that were known to be involved in human monogenic disease. Our results help to improve our understanding of the relationships between structural, functional or evolutionary features and deleterious mutations. Our inferred rules can also be applied to predict the impact of any single amino acid replacement on the function of a protein. The interpretable rules are available at http://decrypthon.igbmc.fr/kd4v/.

摘要

了解基因变异对个体表型的影响是生物医学研究的一个主要目标,特别是对于诊断方法的开发和有效的治疗方案而言。在这项工作中,我们描述了一种最近的基于数据库知识发现(KDD)的方法,该方法使用归纳逻辑编程(ILP)来自动提取有关人类单基因疾病的知识。我们从MSV3d中提取了背景知识,MSV3d是一个将所有人类错义变异映射到三维蛋白质结构的数据库。在本研究中,我们在805种具有已知三维结构且已知与人类单基因疾病有关的蛋白质中鉴定出了8117个突变。我们的结果有助于提高我们对结构、功能或进化特征与有害突变之间关系的理解。我们推断出的规则还可用于预测任何单个氨基酸替换对蛋白质功能的影响。可在http://decrypthon.igbmc.fr/kd4v/获取可解释的规则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16c0/3615990/1857e0b2176e/bbi-7-2013-119f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验