Theoretische Chemie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany.
J Phys Chem A. 2013 Aug 15;117(32):7408-20. doi: 10.1021/jp401438x. Epub 2013 May 10.
The theoretical treatment of state-state interactions and the development of coupled multidimensional potential energy surfaces (PESs) is of fundamental importance for the theoretical investigation of nonadiabatic processes. Usually, only derivative or vibronic coupling is considered, but the presence of heavy atoms in a system can render spin-orbit (SO) coupling important as well. In the present study, we apply a new method recently developed by us (J. Chem. Phys. 2012, 136, 034103, and J. Chem. Phys. 2012, 137, 064101) to generate SO coupled diabatic PESs along the C-I dissociation coordinate for methyl iodide (CH3I). This is the first and mandatory step toward the development of fully coupled full-dimensional PESs to describe the multistate photodynamics of this benchmark system. The method we use here is based on the diabatic asymptotic representation of the molecular fine structure states and an effective relativistic coupling operator. It therefore is called effective relativistic coupling by asymptotic representation (ERCAR). This approach allows the efficient and accurate generation of fully coupled PESs including derivative and SO coupling based on high-level ab initio calculations. In this study we develop a specific ERCAR model for CH3I that so far accounts only for the C-I bond cleavage. Details of the diabatization and the accuracy of the results are investigated in comparison to reference ab initio calculations and experiments. The energies of the adiabatic fine structure states are reproduced in excellent agreement with ab initio SO-CI data. The model is also compared to available literature data, and its performance is evaluated critically. This shows that the new method is very promising for the construction of fully coupled full-dimensional PESs for CH3I to be used in future quantum dynamics studies.
态-态相互作用的理论处理和耦合多维势能面(PES)的发展对于非绝热过程的理论研究至关重要。通常,仅考虑导数或振子耦合,但系统中存在重原子也会使自旋轨道(SO)耦合变得重要。在本研究中,我们应用了我们最近开发的一种新方法(J. Chem. Phys. 2012, 136, 034103 和 J. Chem. Phys. 2012, 137, 064101)来生成 CH3I 沿 C-I 离解坐标的 SO 耦合非绝热 PES。这是开发完全耦合全维 PES 以描述该基准系统多态光动力学的第一步,也是强制性的一步。我们在这里使用的方法基于分子精细结构态的非绝热渐近表示和有效的相对论耦合算符。因此,它被称为有效相对论耦合的渐近表示(ERCAR)。这种方法允许基于高精度从头算计算有效地、准确地生成包括导数和 SO 耦合的完全耦合 PES。在本研究中,我们为 CH3I 开发了一种特定的 ERCAR 模型,该模型目前仅考虑 C-I 键断裂。通过与参考从头算计算和实验进行比较,研究了键合和结果准确性的细节。绝热精细结构态的能量与从头算 SO-CI 数据非常吻合。该模型还与现有文献数据进行了比较,并对其性能进行了批判性评估。这表明,新方法对于构建用于未来量子动力学研究的 CH3I 完全耦合全维 PES 非常有前途。