Barraco R, Persano Adorno D, Brai M, Tranchina L
Dipartimento di Fisica e Chimica, Università di Palermo and CNISM, Viale delle Scienze, Ed. 18, I-90128 Palermo, Italy.
Dipartimento di Fisica e Chimica, Università di Palermo and CNISM, Viale delle Scienze, Ed. 18, I-90128 Palermo, Italy.
Phys Med. 2014 Feb;30(1):86-95. doi: 10.1016/j.ejmp.2013.03.006. Epub 2013 Apr 13.
Feature detection in biomedical signals is crucial for deepening our knowledge about the involved physiological processes. To achieve this aim, many analytic approaches can be applied but only few are able to deal with signals whose time dependent features provide useful clinical information. Among the biomedical signals, the electroretinogram (ERG), that records the retinal response to a light flash, can improve our comprehension of the complex photoreceptoral activities. The present study is focused on the analysis of the early response of the photoreceptoral human system, known as a-wave ERG-component. This wave reflects the functional integrity of the photoreceptors, rods and cones, whose activation dynamics are not yet completely understood. Moreover, since in incipient photoreceptoral pathologies eventual anomalies in a-wave are not always detectable with a "naked eye" analysis of the traces, the possibility to discriminate pathologic from healthy traces, by means of appropriate analytical techniques, could help in clinical diagnosis. In the present paper, we discuss and compare the efficiency of various techniques of signal processing, such as Fourier analysis (FA), Principal Component Analysis (PCA), Wavelet Analysis (WA) in recognising pathological traces from the healthy ones. The investigated retinal pathologies are Achromatopsia, a cone disease and Congenital Stationary Night Blindness, affecting the photoreceptoral signal transmission. Our findings prove that both PCA and FA of conventional ERGs, don't add clinical information useful for the diagnosis of ocular pathologies, whereas the use of a more sophisticated analysis, based on the wavelet transform, provides a powerful tool for routine clinical examinations of patients.
生物医学信号中的特征检测对于深化我们对所涉及生理过程的认识至关重要。为实现这一目标,可以应用许多分析方法,但只有少数方法能够处理其随时间变化的特征能提供有用临床信息的信号。在生物医学信号中,记录视网膜对闪光反应的视网膜电图(ERG),可以增进我们对复杂光感受器活动的理解。本研究聚焦于对光感受器人体系统早期反应的分析,即所谓的a波ERG成分。该波反映了光感受器(视杆细胞和视锥细胞)的功能完整性,而其激活动态尚未完全明了。此外,由于在早期光感受器病变中,a波的最终异常通过对痕迹的“肉眼”分析并不总是能检测到,借助适当的分析技术区分病理痕迹和健康痕迹的可能性,有助于临床诊断。在本文中,我们讨论并比较了各种信号处理技术,如傅里叶分析(FA)、主成分分析(PCA)、小波分析(WA)在识别健康痕迹中的病理痕迹方面的效率。所研究的视网膜病变是全色盲(一种视锥细胞疾病)和先天性静止性夜盲症,它们会影响光感受器信号的传递。我们的研究结果证明,传统ERG的PCA和FA都没有为眼部疾病的诊断提供有用的临床信息,而基于小波变换的更复杂分析的使用,为患者的常规临床检查提供了一个强大的工具。